dit-base_tobacco-small_tobacco3482_kd_NKD_t1.0_g1.5
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.1084
- Accuracy: 0.825
- Brier Loss: 0.2907
- Nll: 1.2013
- F1 Micro: 0.825
- F1 Macro: 0.8171
- Ece: 0.1500
- Aurc: 0.0459
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 5.5631 | 0.135 | 0.9164 | 5.3726 | 0.135 | 0.1126 | 0.2543 | 0.8397 |
No log | 2.0 | 14 | 4.9048 | 0.35 | 0.8238 | 3.0911 | 0.35 | 0.2637 | 0.3348 | 0.6709 |
No log | 3.0 | 21 | 4.1439 | 0.49 | 0.6650 | 1.8580 | 0.49 | 0.4532 | 0.2990 | 0.2902 |
No log | 4.0 | 28 | 3.5518 | 0.66 | 0.4867 | 1.6397 | 0.66 | 0.6303 | 0.2902 | 0.1489 |
No log | 5.0 | 35 | 3.3371 | 0.755 | 0.3981 | 1.6213 | 0.755 | 0.7261 | 0.2670 | 0.0984 |
No log | 6.0 | 42 | 3.4978 | 0.69 | 0.4211 | 1.5668 | 0.69 | 0.6792 | 0.2240 | 0.1170 |
No log | 7.0 | 49 | 3.0945 | 0.795 | 0.3094 | 1.5507 | 0.795 | 0.7653 | 0.1765 | 0.0622 |
No log | 8.0 | 56 | 3.0882 | 0.775 | 0.3056 | 1.5470 | 0.775 | 0.7500 | 0.1826 | 0.0634 |
No log | 9.0 | 63 | 3.1861 | 0.745 | 0.3331 | 1.6432 | 0.745 | 0.7362 | 0.1822 | 0.0754 |
No log | 10.0 | 70 | 2.9849 | 0.81 | 0.2789 | 1.5850 | 0.81 | 0.7802 | 0.1559 | 0.0548 |
No log | 11.0 | 77 | 3.0131 | 0.795 | 0.3012 | 1.4820 | 0.795 | 0.7720 | 0.1627 | 0.0567 |
No log | 12.0 | 84 | 2.9054 | 0.795 | 0.2734 | 1.4141 | 0.795 | 0.7843 | 0.1501 | 0.0535 |
No log | 13.0 | 91 | 2.9704 | 0.815 | 0.2720 | 1.4241 | 0.815 | 0.8144 | 0.1584 | 0.0536 |
No log | 14.0 | 98 | 2.9393 | 0.815 | 0.2627 | 1.4735 | 0.815 | 0.7902 | 0.1582 | 0.0504 |
No log | 15.0 | 105 | 3.0346 | 0.805 | 0.2963 | 1.3649 | 0.805 | 0.7973 | 0.1617 | 0.0564 |
No log | 16.0 | 112 | 2.9648 | 0.79 | 0.2839 | 1.6270 | 0.79 | 0.7722 | 0.1418 | 0.0525 |
No log | 17.0 | 119 | 3.0458 | 0.82 | 0.2960 | 1.3476 | 0.82 | 0.8048 | 0.1575 | 0.0622 |
No log | 18.0 | 126 | 2.8571 | 0.82 | 0.2754 | 1.3958 | 0.82 | 0.8081 | 0.1482 | 0.0493 |
No log | 19.0 | 133 | 2.9429 | 0.775 | 0.2971 | 1.4302 | 0.775 | 0.7617 | 0.1616 | 0.0575 |
No log | 20.0 | 140 | 2.8274 | 0.825 | 0.2698 | 1.3759 | 0.825 | 0.8081 | 0.1520 | 0.0449 |
No log | 21.0 | 147 | 2.8769 | 0.81 | 0.2713 | 1.3604 | 0.81 | 0.8086 | 0.1390 | 0.0466 |
No log | 22.0 | 154 | 2.8787 | 0.805 | 0.2694 | 1.3016 | 0.805 | 0.7975 | 0.1522 | 0.0435 |
No log | 23.0 | 161 | 2.8771 | 0.825 | 0.2646 | 1.4753 | 0.825 | 0.8215 | 0.1414 | 0.0485 |
No log | 24.0 | 168 | 2.8950 | 0.805 | 0.2774 | 1.2783 | 0.805 | 0.7754 | 0.1406 | 0.0495 |
No log | 25.0 | 175 | 2.9780 | 0.825 | 0.2829 | 1.3207 | 0.825 | 0.8332 | 0.1402 | 0.0496 |
No log | 26.0 | 182 | 2.8906 | 0.82 | 0.2653 | 1.3097 | 0.82 | 0.8007 | 0.1380 | 0.0454 |
No log | 27.0 | 189 | 2.9385 | 0.82 | 0.2778 | 1.3039 | 0.82 | 0.8211 | 0.1489 | 0.0469 |
No log | 28.0 | 196 | 2.8644 | 0.83 | 0.2618 | 1.4004 | 0.83 | 0.8325 | 0.1358 | 0.0494 |
No log | 29.0 | 203 | 2.8761 | 0.82 | 0.2720 | 1.2220 | 0.82 | 0.8192 | 0.1411 | 0.0463 |
No log | 30.0 | 210 | 2.8594 | 0.83 | 0.2620 | 1.3323 | 0.83 | 0.8130 | 0.1257 | 0.0448 |
No log | 31.0 | 217 | 2.8946 | 0.825 | 0.2658 | 1.3388 | 0.825 | 0.8236 | 0.1322 | 0.0427 |
No log | 32.0 | 224 | 2.8698 | 0.825 | 0.2712 | 1.3141 | 0.825 | 0.8107 | 0.1467 | 0.0473 |
No log | 33.0 | 231 | 2.8106 | 0.83 | 0.2563 | 1.3750 | 0.83 | 0.8178 | 0.1126 | 0.0422 |
No log | 34.0 | 238 | 2.9752 | 0.8 | 0.2881 | 1.3007 | 0.8000 | 0.7902 | 0.1522 | 0.0499 |
No log | 35.0 | 245 | 2.8919 | 0.815 | 0.2886 | 1.3057 | 0.815 | 0.8149 | 0.1472 | 0.0468 |
No log | 36.0 | 252 | 2.8863 | 0.81 | 0.2833 | 1.1973 | 0.81 | 0.8006 | 0.1453 | 0.0458 |
No log | 37.0 | 259 | 2.8283 | 0.845 | 0.2685 | 1.2743 | 0.845 | 0.8438 | 0.1481 | 0.0451 |
No log | 38.0 | 266 | 2.9174 | 0.815 | 0.2825 | 1.2658 | 0.815 | 0.7965 | 0.1408 | 0.0530 |
No log | 39.0 | 273 | 2.8837 | 0.82 | 0.2775 | 1.2946 | 0.82 | 0.8050 | 0.1440 | 0.0472 |
No log | 40.0 | 280 | 2.8585 | 0.835 | 0.2654 | 1.2830 | 0.835 | 0.8169 | 0.1450 | 0.0467 |
No log | 41.0 | 287 | 2.9323 | 0.82 | 0.2809 | 1.2833 | 0.82 | 0.8085 | 0.1342 | 0.0490 |
No log | 42.0 | 294 | 2.9525 | 0.82 | 0.2847 | 1.2331 | 0.82 | 0.8055 | 0.1352 | 0.0481 |
No log | 43.0 | 301 | 2.9005 | 0.83 | 0.2819 | 1.2643 | 0.83 | 0.8225 | 0.1548 | 0.0482 |
No log | 44.0 | 308 | 2.8388 | 0.83 | 0.2634 | 1.2662 | 0.83 | 0.8152 | 0.1286 | 0.0460 |
No log | 45.0 | 315 | 2.8962 | 0.82 | 0.2752 | 1.3291 | 0.82 | 0.8127 | 0.1442 | 0.0496 |
No log | 46.0 | 322 | 2.9479 | 0.815 | 0.2883 | 1.2433 | 0.815 | 0.7968 | 0.1540 | 0.0523 |
No log | 47.0 | 329 | 2.8795 | 0.825 | 0.2737 | 1.2477 | 0.825 | 0.8260 | 0.1295 | 0.0447 |
No log | 48.0 | 336 | 2.9872 | 0.815 | 0.2992 | 1.2556 | 0.815 | 0.8029 | 0.1379 | 0.0510 |
No log | 49.0 | 343 | 2.8156 | 0.84 | 0.2536 | 1.2715 | 0.8400 | 0.8263 | 0.1240 | 0.0422 |
No log | 50.0 | 350 | 2.9534 | 0.81 | 0.2924 | 1.3383 | 0.81 | 0.7937 | 0.1471 | 0.0478 |
No log | 51.0 | 357 | 2.8604 | 0.855 | 0.2549 | 1.2566 | 0.855 | 0.8547 | 0.1318 | 0.0411 |
No log | 52.0 | 364 | 2.9769 | 0.825 | 0.2828 | 1.2325 | 0.825 | 0.8160 | 0.1407 | 0.0480 |
No log | 53.0 | 371 | 2.8717 | 0.84 | 0.2635 | 1.2511 | 0.8400 | 0.8342 | 0.1254 | 0.0434 |
No log | 54.0 | 378 | 2.9313 | 0.825 | 0.2704 | 1.2676 | 0.825 | 0.8159 | 0.1310 | 0.0477 |
No log | 55.0 | 385 | 2.8552 | 0.82 | 0.2638 | 1.2417 | 0.82 | 0.8031 | 0.1490 | 0.0435 |
No log | 56.0 | 392 | 2.9680 | 0.845 | 0.2729 | 1.2530 | 0.845 | 0.8414 | 0.1349 | 0.0452 |
No log | 57.0 | 399 | 2.9440 | 0.83 | 0.2796 | 1.2344 | 0.83 | 0.8222 | 0.1367 | 0.0450 |
No log | 58.0 | 406 | 3.0577 | 0.815 | 0.2913 | 1.2232 | 0.815 | 0.8068 | 0.1447 | 0.0488 |
No log | 59.0 | 413 | 2.8861 | 0.835 | 0.2643 | 1.2618 | 0.835 | 0.8280 | 0.1354 | 0.0422 |
No log | 60.0 | 420 | 3.0007 | 0.825 | 0.2822 | 1.2352 | 0.825 | 0.8136 | 0.1342 | 0.0449 |
No log | 61.0 | 427 | 2.9368 | 0.835 | 0.2746 | 1.2437 | 0.835 | 0.8258 | 0.1402 | 0.0437 |
No log | 62.0 | 434 | 2.9202 | 0.835 | 0.2709 | 1.2281 | 0.835 | 0.8258 | 0.1435 | 0.0435 |
No log | 63.0 | 441 | 2.9720 | 0.835 | 0.2768 | 1.2129 | 0.835 | 0.8354 | 0.1444 | 0.0460 |
No log | 64.0 | 448 | 2.9993 | 0.835 | 0.2815 | 1.2250 | 0.835 | 0.8245 | 0.1526 | 0.0451 |
No log | 65.0 | 455 | 2.9628 | 0.83 | 0.2725 | 1.2477 | 0.83 | 0.8190 | 0.1405 | 0.0439 |
No log | 66.0 | 462 | 3.0418 | 0.825 | 0.2863 | 1.2244 | 0.825 | 0.8142 | 0.1447 | 0.0473 |
No log | 67.0 | 469 | 3.0196 | 0.83 | 0.2797 | 1.2317 | 0.83 | 0.8223 | 0.1450 | 0.0463 |
No log | 68.0 | 476 | 3.0227 | 0.835 | 0.2834 | 1.2362 | 0.835 | 0.8270 | 0.1416 | 0.0446 |
No log | 69.0 | 483 | 3.0343 | 0.835 | 0.2837 | 1.2377 | 0.835 | 0.8310 | 0.1423 | 0.0455 |
No log | 70.0 | 490 | 2.9982 | 0.835 | 0.2755 | 1.2247 | 0.835 | 0.8245 | 0.1306 | 0.0443 |
No log | 71.0 | 497 | 3.0230 | 0.825 | 0.2860 | 1.2302 | 0.825 | 0.8171 | 0.1376 | 0.0464 |
2.5595 | 72.0 | 504 | 3.0254 | 0.83 | 0.2843 | 1.2190 | 0.83 | 0.8222 | 0.1386 | 0.0463 |
2.5595 | 73.0 | 511 | 3.0295 | 0.825 | 0.2851 | 1.2206 | 0.825 | 0.8192 | 0.1417 | 0.0462 |
2.5595 | 74.0 | 518 | 3.0381 | 0.83 | 0.2845 | 1.2130 | 0.83 | 0.8243 | 0.1423 | 0.0457 |
2.5595 | 75.0 | 525 | 3.0258 | 0.825 | 0.2837 | 1.2210 | 0.825 | 0.8171 | 0.1431 | 0.0460 |
2.5595 | 76.0 | 532 | 3.0694 | 0.825 | 0.2886 | 1.2091 | 0.825 | 0.8171 | 0.1533 | 0.0476 |
2.5595 | 77.0 | 539 | 3.0924 | 0.825 | 0.2939 | 1.2130 | 0.825 | 0.8171 | 0.1515 | 0.0473 |
2.5595 | 78.0 | 546 | 3.0956 | 0.82 | 0.2921 | 1.2081 | 0.82 | 0.8140 | 0.1539 | 0.0482 |
2.5595 | 79.0 | 553 | 3.0859 | 0.825 | 0.2884 | 1.2109 | 0.825 | 0.8220 | 0.1480 | 0.0468 |
2.5595 | 80.0 | 560 | 3.0740 | 0.825 | 0.2894 | 1.2081 | 0.825 | 0.8136 | 0.1399 | 0.0459 |
2.5595 | 81.0 | 567 | 3.0776 | 0.825 | 0.2901 | 1.2066 | 0.825 | 0.8171 | 0.1502 | 0.0462 |
2.5595 | 82.0 | 574 | 3.0736 | 0.83 | 0.2869 | 1.2100 | 0.83 | 0.8251 | 0.1405 | 0.0462 |
2.5595 | 83.0 | 581 | 3.0943 | 0.825 | 0.2919 | 1.2065 | 0.825 | 0.8171 | 0.1503 | 0.0464 |
2.5595 | 84.0 | 588 | 3.0857 | 0.825 | 0.2908 | 1.2080 | 0.825 | 0.8171 | 0.1456 | 0.0461 |
2.5595 | 85.0 | 595 | 3.0874 | 0.825 | 0.2890 | 1.2063 | 0.825 | 0.8171 | 0.1457 | 0.0461 |
2.5595 | 86.0 | 602 | 3.0863 | 0.825 | 0.2880 | 1.2069 | 0.825 | 0.8171 | 0.1453 | 0.0459 |
2.5595 | 87.0 | 609 | 3.0844 | 0.825 | 0.2882 | 1.2059 | 0.825 | 0.8171 | 0.1457 | 0.0456 |
2.5595 | 88.0 | 616 | 3.1011 | 0.825 | 0.2909 | 1.2034 | 0.825 | 0.8171 | 0.1557 | 0.0462 |
2.5595 | 89.0 | 623 | 3.1033 | 0.825 | 0.2912 | 1.2033 | 0.825 | 0.8171 | 0.1528 | 0.0463 |
2.5595 | 90.0 | 630 | 3.1004 | 0.825 | 0.2903 | 1.2029 | 0.825 | 0.8171 | 0.1541 | 0.0461 |
2.5595 | 91.0 | 637 | 3.0998 | 0.825 | 0.2900 | 1.2033 | 0.825 | 0.8171 | 0.1499 | 0.0459 |
2.5595 | 92.0 | 644 | 3.1039 | 0.825 | 0.2904 | 1.2023 | 0.825 | 0.8171 | 0.1535 | 0.0460 |
2.5595 | 93.0 | 651 | 3.1058 | 0.825 | 0.2906 | 1.2020 | 0.825 | 0.8171 | 0.1498 | 0.0460 |
2.5595 | 94.0 | 658 | 3.1057 | 0.825 | 0.2906 | 1.2022 | 0.825 | 0.8171 | 0.1504 | 0.0459 |
2.5595 | 95.0 | 665 | 3.1066 | 0.825 | 0.2908 | 1.2018 | 0.825 | 0.8171 | 0.1509 | 0.0460 |
2.5595 | 96.0 | 672 | 3.1069 | 0.825 | 0.2906 | 1.2018 | 0.825 | 0.8171 | 0.1506 | 0.0459 |
2.5595 | 97.0 | 679 | 3.1079 | 0.825 | 0.2906 | 1.2013 | 0.825 | 0.8171 | 0.1497 | 0.0459 |
2.5595 | 98.0 | 686 | 3.1085 | 0.825 | 0.2907 | 1.2013 | 0.825 | 0.8171 | 0.1500 | 0.0459 |
2.5595 | 99.0 | 693 | 3.1083 | 0.825 | 0.2907 | 1.2013 | 0.825 | 0.8171 | 0.1499 | 0.0460 |
2.5595 | 100.0 | 700 | 3.1084 | 0.825 | 0.2907 | 1.2013 | 0.825 | 0.8171 | 0.1500 | 0.0459 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jordyvl/dit-base_tobacco-small_tobacco3482_kd_NKD_t1.0_g1.5
Base model
WinKawaks/vit-small-patch16-224