Edit model card

swin-base_tobacco

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window8-256 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6059
  • Accuracy: 0.835
  • Brier Loss: 0.2576
  • Nll: 1.2824
  • F1 Micro: 0.835
  • F1 Macro: 0.8348
  • Ece: 0.1310
  • Aurc: 0.0387

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 3 2.3165 0.11 0.9031 7.6310 0.11 0.0604 0.2004 0.8718
No log 1.96 6 2.2894 0.155 0.8975 6.8146 0.155 0.0944 0.2230 0.8555
No log 2.96 9 2.2481 0.215 0.8888 5.1480 0.2150 0.1472 0.2492 0.8119
No log 3.96 12 2.1955 0.275 0.8770 4.2879 0.275 0.1939 0.2844 0.6562
No log 4.96 15 2.1326 0.36 0.8619 3.8809 0.36 0.2199 0.3357 0.4962
No log 5.96 18 2.0568 0.375 0.8415 3.9254 0.375 0.2309 0.3377 0.4471
No log 6.96 21 1.9639 0.375 0.8126 3.8158 0.375 0.2319 0.3195 0.4534
No log 7.96 24 1.8621 0.375 0.7781 3.3244 0.375 0.2456 0.2924 0.4833
No log 8.96 27 1.7100 0.44 0.7273 2.8211 0.44 0.3136 0.3188 0.3515
No log 9.96 30 1.5377 0.535 0.6611 2.4560 0.535 0.4259 0.3557 0.2259
No log 10.96 33 1.3588 0.595 0.5825 2.3216 0.595 0.4933 0.2986 0.1795
No log 11.96 36 1.2072 0.62 0.5215 2.3831 0.62 0.5352 0.2927 0.1541
No log 12.96 39 1.0766 0.67 0.4715 2.2078 0.67 0.5966 0.2727 0.1219
No log 13.96 42 0.9699 0.675 0.4408 1.8028 0.675 0.5961 0.2568 0.1215
No log 14.96 45 0.8660 0.68 0.4011 1.4772 0.68 0.5978 0.2176 0.1014
No log 15.96 48 0.7907 0.725 0.3709 1.4755 0.7250 0.6768 0.2055 0.0904
No log 16.96 51 0.7362 0.75 0.3501 1.3822 0.75 0.7077 0.2042 0.0806
No log 17.96 54 0.6867 0.76 0.3322 1.3191 0.76 0.7177 0.1926 0.0724
No log 18.96 57 0.6572 0.78 0.3203 1.2996 0.78 0.7424 0.1920 0.0699
No log 19.96 60 0.6074 0.785 0.2967 1.3136 0.785 0.7686 0.1705 0.0589
No log 20.96 63 0.6050 0.795 0.2956 1.3729 0.795 0.7793 0.1762 0.0600
No log 21.96 66 0.5748 0.83 0.2785 1.3558 0.83 0.8113 0.1744 0.0529
No log 22.96 69 0.5722 0.815 0.2756 1.3937 0.815 0.8097 0.1767 0.0489
No log 23.96 72 0.5689 0.795 0.2750 1.3641 0.795 0.7947 0.1452 0.0539
No log 24.96 75 0.5536 0.825 0.2718 1.2773 0.825 0.8068 0.1698 0.0509
No log 25.96 78 0.5464 0.805 0.2726 1.2772 0.805 0.7888 0.1499 0.0487
No log 26.96 81 0.5455 0.81 0.2626 1.3607 0.81 0.8080 0.1750 0.0471
No log 27.96 84 0.5542 0.815 0.2609 1.3643 0.815 0.8089 0.1521 0.0466
No log 28.96 87 0.5480 0.82 0.2710 1.2996 0.82 0.8227 0.1422 0.0468
No log 29.96 90 0.5507 0.83 0.2654 1.3425 0.83 0.8320 0.1491 0.0475
No log 30.96 93 0.5608 0.815 0.2591 1.4365 0.815 0.8145 0.1405 0.0442
No log 31.96 96 0.5473 0.825 0.2622 1.3600 0.825 0.8198 0.1339 0.0424
No log 32.96 99 0.5296 0.83 0.2588 1.2906 0.83 0.8311 0.1373 0.0416
No log 33.96 102 0.5370 0.82 0.2522 1.2895 0.82 0.8214 0.1428 0.0436
No log 34.96 105 0.5578 0.8 0.2707 1.3364 0.8000 0.8056 0.1708 0.0481
No log 35.96 108 0.5193 0.825 0.2484 1.2883 0.825 0.8250 0.1316 0.0405
No log 36.96 111 0.5306 0.815 0.2569 1.2856 0.815 0.8093 0.1344 0.0420
No log 37.96 114 0.5824 0.815 0.2729 1.3994 0.815 0.8182 0.1418 0.0479
No log 38.96 117 0.5486 0.82 0.2549 1.2974 0.82 0.8259 0.1312 0.0443
No log 39.96 120 0.5421 0.83 0.2545 1.3575 0.83 0.8316 0.1491 0.0415
No log 40.96 123 0.5477 0.81 0.2700 1.3251 0.81 0.8166 0.1499 0.0418
No log 41.96 126 0.5404 0.825 0.2553 1.3186 0.825 0.8309 0.1519 0.0414
No log 42.96 129 0.5698 0.83 0.2598 1.3249 0.83 0.8386 0.1396 0.0452
No log 43.96 132 0.5538 0.815 0.2605 1.3122 0.815 0.8212 0.1410 0.0430
No log 44.96 135 0.5369 0.81 0.2586 1.3030 0.81 0.8141 0.1404 0.0409
No log 45.96 138 0.5614 0.825 0.2615 1.3881 0.825 0.8278 0.1404 0.0427
No log 46.96 141 0.5636 0.825 0.2601 1.4077 0.825 0.8286 0.1345 0.0421
No log 47.96 144 0.5783 0.83 0.2684 1.3350 0.83 0.8304 0.1373 0.0422
No log 48.96 147 0.5749 0.825 0.2663 1.3167 0.825 0.8241 0.1308 0.0424
No log 49.96 150 0.5802 0.82 0.2692 1.3191 0.82 0.8194 0.1217 0.0461
No log 50.96 153 0.5696 0.82 0.2639 1.3330 0.82 0.8175 0.1372 0.0429
No log 51.96 156 0.5827 0.84 0.2656 1.3975 0.8400 0.8444 0.1378 0.0426
No log 52.96 159 0.5725 0.805 0.2669 1.3172 0.805 0.7997 0.1459 0.0422
No log 53.96 162 0.5769 0.805 0.2691 1.3111 0.805 0.7991 0.1457 0.0434
No log 54.96 165 0.5883 0.805 0.2647 1.4581 0.805 0.8104 0.1405 0.0430
No log 55.96 168 0.5834 0.835 0.2543 1.4586 0.835 0.8349 0.1346 0.0407
No log 56.96 171 0.5875 0.835 0.2543 1.3211 0.835 0.8358 0.1320 0.0402
No log 57.96 174 0.5741 0.84 0.2533 1.3027 0.8400 0.8405 0.1290 0.0395
No log 58.96 177 0.5737 0.82 0.2624 1.3104 0.82 0.8167 0.1437 0.0396
No log 59.96 180 0.5796 0.815 0.2603 1.4021 0.815 0.8154 0.1286 0.0406
No log 60.96 183 0.5711 0.83 0.2553 1.4016 0.83 0.8306 0.1272 0.0390
No log 61.96 186 0.5670 0.825 0.2591 1.3136 0.825 0.8263 0.1429 0.0406
No log 62.96 189 0.5736 0.825 0.2592 1.3077 0.825 0.8231 0.1244 0.0417
No log 63.96 192 0.5730 0.83 0.2531 1.3007 0.83 0.8274 0.1275 0.0401
No log 64.96 195 0.6130 0.82 0.2687 1.3014 0.82 0.8246 0.1484 0.0414
No log 65.96 198 0.6023 0.825 0.2596 1.3107 0.825 0.8254 0.1373 0.0404
No log 66.96 201 0.5923 0.825 0.2599 1.3078 0.825 0.8263 0.1312 0.0411
No log 67.96 204 0.6197 0.81 0.2766 1.3046 0.81 0.8035 0.1373 0.0451
No log 68.96 207 0.5918 0.805 0.2651 1.3019 0.805 0.8044 0.1407 0.0404
No log 69.96 210 0.5908 0.835 0.2544 1.3286 0.835 0.8344 0.1354 0.0394
No log 70.96 213 0.5941 0.83 0.2558 1.3019 0.83 0.8324 0.1402 0.0401
No log 71.96 216 0.5994 0.82 0.2588 1.2998 0.82 0.8215 0.1297 0.0411
No log 72.96 219 0.6083 0.825 0.2638 1.3525 0.825 0.8257 0.1379 0.0410
No log 73.96 222 0.5980 0.825 0.2609 1.3515 0.825 0.8295 0.1457 0.0394
No log 74.96 225 0.5945 0.83 0.2568 1.3670 0.83 0.8302 0.1324 0.0390
No log 75.96 228 0.5982 0.845 0.2535 1.4552 0.845 0.8476 0.1246 0.0390
No log 76.96 231 0.5850 0.83 0.2507 1.3700 0.83 0.8287 0.1348 0.0391
No log 77.96 234 0.5859 0.825 0.2566 1.2917 0.825 0.8232 0.1309 0.0394
No log 78.96 237 0.6085 0.835 0.2630 1.3516 0.835 0.8370 0.1329 0.0420
No log 79.96 240 0.6108 0.835 0.2621 1.2943 0.835 0.8370 0.1395 0.0414
No log 80.96 243 0.6061 0.81 0.2596 1.2898 0.81 0.8119 0.1313 0.0413
No log 81.96 246 0.6006 0.815 0.2564 1.2952 0.815 0.8122 0.1453 0.0406
No log 82.96 249 0.6050 0.825 0.2577 1.2998 0.825 0.8283 0.1271 0.0400
No log 83.96 252 0.6197 0.835 0.2658 1.3021 0.835 0.8386 0.1222 0.0414
No log 84.96 255 0.6086 0.825 0.2651 1.2889 0.825 0.8251 0.1207 0.0404
No log 85.96 258 0.5965 0.83 0.2587 1.2929 0.83 0.8304 0.1323 0.0397
No log 86.96 261 0.5897 0.82 0.2550 1.2980 0.82 0.8171 0.1372 0.0394
No log 87.96 264 0.5887 0.83 0.2551 1.2950 0.83 0.8290 0.1251 0.0391
No log 88.96 267 0.5958 0.82 0.2598 1.2871 0.82 0.8180 0.1319 0.0392
No log 89.96 270 0.6088 0.82 0.2658 1.2805 0.82 0.8184 0.1513 0.0396
No log 90.96 273 0.6192 0.825 0.2692 1.2772 0.825 0.8263 0.1258 0.0402
No log 91.96 276 0.6230 0.825 0.2689 1.2777 0.825 0.8263 0.1416 0.0404
No log 92.96 279 0.6223 0.83 0.2667 1.2792 0.83 0.8318 0.1296 0.0401
No log 93.96 282 0.6145 0.83 0.2627 1.2797 0.83 0.8321 0.1265 0.0394
No log 94.96 285 0.6105 0.83 0.2610 1.2807 0.83 0.8321 0.1352 0.0392
No log 95.96 288 0.6095 0.83 0.2602 1.2815 0.83 0.8321 0.1360 0.0390
No log 96.96 291 0.6076 0.835 0.2590 1.2824 0.835 0.8348 0.1255 0.0389
No log 97.96 294 0.6060 0.835 0.2578 1.2827 0.835 0.8348 0.1281 0.0388
No log 98.96 297 0.6058 0.835 0.2575 1.2825 0.835 0.8348 0.1410 0.0387
No log 99.96 300 0.6059 0.835 0.2576 1.2824 0.835 0.8348 0.1310 0.0387

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.