vit-base_rvl_tobacco
This model is a fine-tuned version of jordyvl/vit-base_rvl-cdip on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4152
- Accuracy: 0.905
- Brier Loss: 0.1584
- Nll: 0.7130
- F1 Micro: 0.905
- F1 Macro: 0.9056
- Ece: 0.1601
- Aurc: 0.0196
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 0.96 | 3 | 2.3234 | 0.045 | 0.9050 | 9.6090 | 0.045 | 0.0479 | 0.1570 | 0.9674 |
No log | 1.96 | 6 | 2.3007 | 0.05 | 0.9005 | 8.5690 | 0.0500 | 0.0549 | 0.1567 | 0.9599 |
No log | 2.96 | 9 | 2.2614 | 0.095 | 0.8924 | 6.9011 | 0.095 | 0.0853 | 0.1807 | 0.9128 |
No log | 3.96 | 12 | 2.2062 | 0.255 | 0.8804 | 5.5442 | 0.255 | 0.1609 | 0.2738 | 0.7469 |
No log | 4.96 | 15 | 2.1348 | 0.385 | 0.8636 | 4.0613 | 0.3850 | 0.2330 | 0.3605 | 0.4157 |
No log | 5.96 | 18 | 2.0473 | 0.48 | 0.8410 | 2.5353 | 0.48 | 0.3152 | 0.4376 | 0.2329 |
No log | 6.96 | 21 | 1.9483 | 0.64 | 0.8128 | 2.0469 | 0.64 | 0.5131 | 0.5355 | 0.1314 |
No log | 7.96 | 24 | 1.8371 | 0.735 | 0.7783 | 1.7309 | 0.735 | 0.6333 | 0.5897 | 0.0802 |
No log | 8.96 | 27 | 1.7227 | 0.775 | 0.7393 | 1.3371 | 0.775 | 0.6937 | 0.6049 | 0.0560 |
No log | 9.96 | 30 | 1.6124 | 0.805 | 0.6978 | 1.1320 | 0.805 | 0.7319 | 0.5981 | 0.0462 |
No log | 10.96 | 33 | 1.4990 | 0.82 | 0.6518 | 0.9973 | 0.82 | 0.7658 | 0.5882 | 0.0444 |
No log | 11.96 | 36 | 1.3922 | 0.855 | 0.6064 | 0.8830 | 0.855 | 0.8127 | 0.5823 | 0.0397 |
No log | 12.96 | 39 | 1.2985 | 0.865 | 0.5653 | 0.8957 | 0.865 | 0.8350 | 0.5604 | 0.0365 |
No log | 13.96 | 42 | 1.2141 | 0.89 | 0.5271 | 0.6892 | 0.89 | 0.8733 | 0.5564 | 0.0331 |
No log | 14.96 | 45 | 1.1402 | 0.895 | 0.4926 | 0.6695 | 0.895 | 0.8803 | 0.5341 | 0.0321 |
No log | 15.96 | 48 | 1.0699 | 0.91 | 0.4596 | 0.6407 | 0.91 | 0.8999 | 0.5185 | 0.0285 |
No log | 16.96 | 51 | 1.0037 | 0.91 | 0.4282 | 0.6163 | 0.91 | 0.8979 | 0.4831 | 0.0270 |
No log | 17.96 | 54 | 0.9457 | 0.915 | 0.4004 | 0.6126 | 0.915 | 0.9011 | 0.4618 | 0.0247 |
No log | 18.96 | 57 | 0.8914 | 0.915 | 0.3742 | 0.6066 | 0.915 | 0.9011 | 0.4426 | 0.0242 |
No log | 19.96 | 60 | 0.8405 | 0.92 | 0.3495 | 0.5898 | 0.92 | 0.9102 | 0.4314 | 0.0216 |
No log | 20.96 | 63 | 0.7995 | 0.915 | 0.3291 | 0.5934 | 0.915 | 0.9049 | 0.4033 | 0.0204 |
No log | 21.96 | 66 | 0.7583 | 0.915 | 0.3089 | 0.5883 | 0.915 | 0.9049 | 0.3818 | 0.0206 |
No log | 22.96 | 69 | 0.7228 | 0.915 | 0.2915 | 0.5835 | 0.915 | 0.9049 | 0.3707 | 0.0199 |
No log | 23.96 | 72 | 0.6889 | 0.925 | 0.2747 | 0.5703 | 0.925 | 0.9169 | 0.3649 | 0.0191 |
No log | 24.96 | 75 | 0.6624 | 0.925 | 0.2614 | 0.5769 | 0.925 | 0.9200 | 0.3375 | 0.0190 |
No log | 25.96 | 78 | 0.6373 | 0.925 | 0.2491 | 0.5764 | 0.925 | 0.9218 | 0.3206 | 0.0191 |
No log | 26.96 | 81 | 0.6106 | 0.93 | 0.2363 | 0.5570 | 0.93 | 0.9251 | 0.3276 | 0.0186 |
No log | 27.96 | 84 | 0.5945 | 0.93 | 0.2281 | 0.5721 | 0.93 | 0.9251 | 0.3201 | 0.0187 |
No log | 28.96 | 87 | 0.5780 | 0.92 | 0.2206 | 0.5668 | 0.92 | 0.9190 | 0.3008 | 0.0200 |
No log | 29.96 | 90 | 0.5613 | 0.925 | 0.2125 | 0.5709 | 0.925 | 0.9218 | 0.2961 | 0.0191 |
No log | 30.96 | 93 | 0.5456 | 0.925 | 0.2051 | 0.6155 | 0.925 | 0.9175 | 0.2764 | 0.0182 |
No log | 31.96 | 96 | 0.5354 | 0.91 | 0.2008 | 0.6139 | 0.91 | 0.9104 | 0.2600 | 0.0187 |
No log | 32.96 | 99 | 0.5248 | 0.91 | 0.1961 | 0.6078 | 0.91 | 0.9104 | 0.2610 | 0.0194 |
No log | 33.96 | 102 | 0.5151 | 0.91 | 0.1915 | 0.6158 | 0.91 | 0.9084 | 0.2529 | 0.0186 |
No log | 34.96 | 105 | 0.5066 | 0.91 | 0.1880 | 0.6121 | 0.91 | 0.9084 | 0.2409 | 0.0186 |
No log | 35.96 | 108 | 0.4986 | 0.91 | 0.1846 | 0.6070 | 0.91 | 0.9084 | 0.2429 | 0.0186 |
No log | 36.96 | 111 | 0.4920 | 0.91 | 0.1817 | 0.6208 | 0.91 | 0.9084 | 0.2380 | 0.0187 |
No log | 37.96 | 114 | 0.4858 | 0.91 | 0.1793 | 0.6081 | 0.91 | 0.9084 | 0.2319 | 0.0185 |
No log | 38.96 | 117 | 0.4792 | 0.91 | 0.1766 | 0.6044 | 0.91 | 0.9084 | 0.2276 | 0.0184 |
No log | 39.96 | 120 | 0.4753 | 0.91 | 0.1749 | 0.6671 | 0.91 | 0.9084 | 0.2245 | 0.0185 |
No log | 40.96 | 123 | 0.4704 | 0.905 | 0.1731 | 0.6137 | 0.905 | 0.9056 | 0.2321 | 0.0186 |
No log | 41.96 | 126 | 0.4656 | 0.91 | 0.1714 | 0.6028 | 0.91 | 0.9084 | 0.2259 | 0.0187 |
No log | 42.96 | 129 | 0.4624 | 0.91 | 0.1703 | 0.6048 | 0.91 | 0.9084 | 0.2080 | 0.0189 |
No log | 43.96 | 132 | 0.4604 | 0.905 | 0.1695 | 0.6674 | 0.905 | 0.9056 | 0.2167 | 0.0187 |
No log | 44.96 | 135 | 0.4553 | 0.905 | 0.1678 | 0.6190 | 0.905 | 0.9056 | 0.2130 | 0.0185 |
No log | 45.96 | 138 | 0.4512 | 0.905 | 0.1663 | 0.6002 | 0.905 | 0.9056 | 0.2182 | 0.0186 |
No log | 46.96 | 141 | 0.4513 | 0.905 | 0.1665 | 0.6681 | 0.905 | 0.9056 | 0.1902 | 0.0185 |
No log | 47.96 | 144 | 0.4480 | 0.905 | 0.1656 | 0.6661 | 0.905 | 0.9056 | 0.1900 | 0.0186 |
No log | 48.96 | 147 | 0.4451 | 0.905 | 0.1647 | 0.6085 | 0.905 | 0.9056 | 0.1969 | 0.0185 |
No log | 49.96 | 150 | 0.4429 | 0.905 | 0.1638 | 0.6729 | 0.905 | 0.9056 | 0.1954 | 0.0186 |
No log | 50.96 | 153 | 0.4416 | 0.905 | 0.1637 | 0.7300 | 0.905 | 0.9056 | 0.1730 | 0.0188 |
No log | 51.96 | 156 | 0.4390 | 0.905 | 0.1627 | 0.6832 | 0.905 | 0.9056 | 0.1881 | 0.0187 |
No log | 52.96 | 159 | 0.4377 | 0.905 | 0.1625 | 0.6708 | 0.905 | 0.9056 | 0.1724 | 0.0187 |
No log | 53.96 | 162 | 0.4360 | 0.905 | 0.1620 | 0.7300 | 0.905 | 0.9056 | 0.1714 | 0.0189 |
No log | 54.96 | 165 | 0.4338 | 0.905 | 0.1613 | 0.6734 | 0.905 | 0.9056 | 0.1923 | 0.0190 |
No log | 55.96 | 168 | 0.4321 | 0.905 | 0.1609 | 0.6635 | 0.905 | 0.9056 | 0.1846 | 0.0189 |
No log | 56.96 | 171 | 0.4326 | 0.905 | 0.1614 | 0.6722 | 0.905 | 0.9056 | 0.1851 | 0.0190 |
No log | 57.96 | 174 | 0.4322 | 0.905 | 0.1613 | 0.7871 | 0.905 | 0.9056 | 0.1850 | 0.0191 |
No log | 58.96 | 177 | 0.4286 | 0.905 | 0.1600 | 0.6660 | 0.905 | 0.9056 | 0.1733 | 0.0190 |
No log | 59.96 | 180 | 0.4267 | 0.905 | 0.1596 | 0.6581 | 0.905 | 0.9056 | 0.1720 | 0.0190 |
No log | 60.96 | 183 | 0.4277 | 0.905 | 0.1601 | 0.7252 | 0.905 | 0.9056 | 0.1772 | 0.0189 |
No log | 61.96 | 186 | 0.4274 | 0.905 | 0.1601 | 0.7841 | 0.905 | 0.9056 | 0.1866 | 0.0192 |
No log | 62.96 | 189 | 0.4264 | 0.905 | 0.1598 | 0.7830 | 0.905 | 0.9056 | 0.1669 | 0.0191 |
No log | 63.96 | 192 | 0.4246 | 0.905 | 0.1595 | 0.7188 | 0.905 | 0.9056 | 0.1671 | 0.0191 |
No log | 64.96 | 195 | 0.4236 | 0.905 | 0.1592 | 0.7170 | 0.905 | 0.9056 | 0.1762 | 0.0193 |
No log | 65.96 | 198 | 0.4238 | 0.905 | 0.1594 | 0.7235 | 0.905 | 0.9056 | 0.1757 | 0.0192 |
No log | 66.96 | 201 | 0.4227 | 0.905 | 0.1591 | 0.7218 | 0.905 | 0.9056 | 0.1724 | 0.0192 |
No log | 67.96 | 204 | 0.4220 | 0.905 | 0.1590 | 0.7195 | 0.905 | 0.9056 | 0.1715 | 0.0191 |
No log | 68.96 | 207 | 0.4214 | 0.905 | 0.1589 | 0.7201 | 0.905 | 0.9056 | 0.1708 | 0.0191 |
No log | 69.96 | 210 | 0.4210 | 0.905 | 0.1588 | 0.7210 | 0.905 | 0.9056 | 0.1703 | 0.0193 |
No log | 70.96 | 213 | 0.4211 | 0.905 | 0.1590 | 0.7226 | 0.905 | 0.9056 | 0.1697 | 0.0193 |
No log | 71.96 | 216 | 0.4201 | 0.905 | 0.1587 | 0.7165 | 0.905 | 0.9056 | 0.1785 | 0.0193 |
No log | 72.96 | 219 | 0.4194 | 0.905 | 0.1587 | 0.7145 | 0.905 | 0.9056 | 0.1780 | 0.0194 |
No log | 73.96 | 222 | 0.4194 | 0.905 | 0.1587 | 0.7189 | 0.905 | 0.9056 | 0.1777 | 0.0194 |
No log | 74.96 | 225 | 0.4192 | 0.905 | 0.1587 | 0.7193 | 0.905 | 0.9056 | 0.1770 | 0.0194 |
No log | 75.96 | 228 | 0.4188 | 0.905 | 0.1586 | 0.7186 | 0.905 | 0.9056 | 0.1764 | 0.0192 |
No log | 76.96 | 231 | 0.4180 | 0.905 | 0.1585 | 0.7148 | 0.905 | 0.9056 | 0.1786 | 0.0192 |
No log | 77.96 | 234 | 0.4174 | 0.905 | 0.1584 | 0.7121 | 0.905 | 0.9056 | 0.1746 | 0.0193 |
No log | 78.96 | 237 | 0.4178 | 0.905 | 0.1585 | 0.7159 | 0.905 | 0.9056 | 0.1720 | 0.0195 |
No log | 79.96 | 240 | 0.4177 | 0.905 | 0.1586 | 0.7161 | 0.905 | 0.9056 | 0.1627 | 0.0195 |
No log | 80.96 | 243 | 0.4173 | 0.905 | 0.1585 | 0.7147 | 0.905 | 0.9056 | 0.1627 | 0.0195 |
No log | 81.96 | 246 | 0.4171 | 0.905 | 0.1585 | 0.7159 | 0.905 | 0.9056 | 0.1650 | 0.0195 |
No log | 82.96 | 249 | 0.4162 | 0.905 | 0.1582 | 0.7135 | 0.905 | 0.9056 | 0.1742 | 0.0194 |
No log | 83.96 | 252 | 0.4163 | 0.905 | 0.1584 | 0.7138 | 0.905 | 0.9056 | 0.1522 | 0.0196 |
No log | 84.96 | 255 | 0.4161 | 0.905 | 0.1583 | 0.7136 | 0.905 | 0.9056 | 0.1616 | 0.0195 |
No log | 85.96 | 258 | 0.4163 | 0.905 | 0.1585 | 0.7143 | 0.905 | 0.9056 | 0.1615 | 0.0196 |
No log | 86.96 | 261 | 0.4161 | 0.905 | 0.1585 | 0.7132 | 0.905 | 0.9056 | 0.1614 | 0.0195 |
No log | 87.96 | 264 | 0.4159 | 0.905 | 0.1584 | 0.7133 | 0.905 | 0.9056 | 0.1514 | 0.0195 |
No log | 88.96 | 267 | 0.4157 | 0.905 | 0.1584 | 0.7132 | 0.905 | 0.9056 | 0.1513 | 0.0195 |
No log | 89.96 | 270 | 0.4156 | 0.905 | 0.1584 | 0.7134 | 0.905 | 0.9056 | 0.1511 | 0.0195 |
No log | 90.96 | 273 | 0.4153 | 0.905 | 0.1583 | 0.7124 | 0.905 | 0.9056 | 0.1605 | 0.0195 |
No log | 91.96 | 276 | 0.4153 | 0.905 | 0.1584 | 0.7121 | 0.905 | 0.9056 | 0.1604 | 0.0195 |
No log | 92.96 | 279 | 0.4154 | 0.905 | 0.1584 | 0.7127 | 0.905 | 0.9056 | 0.1603 | 0.0195 |
No log | 93.96 | 282 | 0.4154 | 0.905 | 0.1585 | 0.7131 | 0.905 | 0.9056 | 0.1603 | 0.0195 |
No log | 94.96 | 285 | 0.4154 | 0.905 | 0.1585 | 0.7132 | 0.905 | 0.9056 | 0.1603 | 0.0195 |
No log | 95.96 | 288 | 0.4154 | 0.905 | 0.1585 | 0.7135 | 0.905 | 0.9056 | 0.1603 | 0.0196 |
No log | 96.96 | 291 | 0.4153 | 0.905 | 0.1585 | 0.7133 | 0.905 | 0.9056 | 0.1602 | 0.0195 |
No log | 97.96 | 294 | 0.4152 | 0.905 | 0.1584 | 0.7132 | 0.905 | 0.9056 | 0.1601 | 0.0196 |
No log | 98.96 | 297 | 0.4152 | 0.905 | 0.1584 | 0.7130 | 0.905 | 0.9056 | 0.1601 | 0.0196 |
No log | 99.96 | 300 | 0.4152 | 0.905 | 0.1584 | 0.7130 | 0.905 | 0.9056 | 0.1601 | 0.0196 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 164
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.