|
--- |
|
license: mit |
|
base_model: pdelobelle/robbert-v2-dutch-base |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: manifesto-dutch-binary-relevance |
|
results: [] |
|
language: |
|
- nl |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# manifesto-dutch-binary-relevance |
|
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base). |
|
|
|
## Example usage |
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text-classification", |
|
model="joris/manifesto-dutch-binary-relevance", |
|
trust_remote_code=True) |
|
|
|
print(pipe("De digitale versie lees je op d66.nl/verkiezingsprogramma")) |
|
print(pipe("Duizenden studenten, net afgestudeerden en starters hebben op dit moment geen zicht op een (betaalbare) woning.")) |
|
|
|
|
|
## [{'label': 'LABEL_1', 'score': 0.9609444737434387}] # is 000 |
|
## [{'label': 'LABEL_0', 'score': 0.9993253946304321}] # some other code |
|
``` |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
| | Precision | Recall | F1-Score | Support | |
|
|-----------|-----------|--------|----------|----------| |
|
| 0 | 0.98 | 0.99 | 0.99 | 10043 | |
|
| 1 | 0.88 | 0.76 | 0.82 | 714 | |
|
| Accuracy | | | 0.98 | 10757 | |
|
| Macro avg | 0.93 | 0.88 | 0.90 | 10757 | |
|
| Weighted avg | 0.98 | 0.98 | 0.98 | 10757 | |
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- TensorFlow 2.14.0 |
|
- Tokenizers 0.14.1 |