joseph10's picture
End of training
8ca8b04
metadata
license: apache-2.0
base_model: agvidit1/DistilledBert_HateSpeech_pretrain
tags:
  - generated_from_trainer
datasets:
  - hate_speech18
metrics:
  - accuracy
model-index:
  - name: distilbert-hate_speech18
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: hate_speech18
          type: hate_speech18
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8587751371115173

distilbert-hate_speech18

This model is a fine-tuned version of agvidit1/DistilledBert_HateSpeech_pretrain on the hate_speech18 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4684
  • Accuracy: 0.8588

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.050180626898551e-06
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 33
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4404 1.0 240 0.4670 0.8533
0.4356 2.0 480 0.4642 0.8675
0.4303 3.0 720 0.4649 0.8748
0.4282 4.0 960 0.4694 0.8592
0.4273 5.0 1200 0.4638 0.8729
0.4256 6.0 1440 0.4651 0.8679
0.425 7.0 1680 0.4682 0.8560
0.4227 8.0 1920 0.4684 0.8588

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.1
  • Datasets 2.15.0
  • Tokenizers 0.15.0