BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-1500")
# Run inference
sentences = [
'This post focuses on extrinsic hallucination. To avoid hallucination, LLMs need to be (1) factual and (2) acknowledge not knowing the answer when applicable.\nWhat Causes Hallucinations?#\nGiven a standard deployable LLM goes through pre-training and fine-tuning for alignment and other improvements, let us consider causes at both stages.\nPre-training Data Issues#\nThe volume of the pre-training data corpus is enormous, as it is supposed to represent world knowledge in all available written forms. Data crawled from the public Internet is the most common choice and thus out-of-date, missing, or incorrect information is expected. As the model may incorrectly memorize this information by simply maximizing the log-likelihood, we would expect the model to make mistakes.\nFine-tuning New Knowledge#',
'What impact does relying on outdated data during the pre-training phase of large language models have on the accuracy of their generated outputs?',
'In what ways do MaybeKnown examples improve the performance of a model when contrasted with HighlyKnown examples, and what implications does this have for developing effective training strategies?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9531 |
cosine_accuracy@3 | 1.0 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9531 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9531 |
cosine_recall@3 | 1.0 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9827 |
cosine_mrr@10 | 0.9766 |
cosine_map@100 | 0.9766 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9479 |
cosine_accuracy@3 | 1.0 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9479 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9479 |
cosine_recall@3 | 1.0 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9801 |
cosine_mrr@10 | 0.9731 |
cosine_map@100 | 0.9731 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9635 |
cosine_accuracy@3 | 1.0 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9635 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9635 |
cosine_recall@3 | 1.0 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9865 |
cosine_mrr@10 | 0.9818 |
cosine_map@100 | 0.9818 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9583 |
cosine_accuracy@3 | 1.0 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9583 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9583 |
cosine_recall@3 | 1.0 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9833 |
cosine_mrr@10 | 0.9774 |
cosine_map@100 | 0.9774 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9583 |
cosine_accuracy@3 | 1.0 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9583 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9583 |
cosine_recall@3 | 1.0 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9833 |
cosine_mrr@10 | 0.9774 |
cosine_map@100 | 0.9774 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.1load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.0266 | 5 | 4.6076 | - | - | - | - | - |
0.0532 | 10 | 5.2874 | - | - | - | - | - |
0.0798 | 15 | 5.4181 | - | - | - | - | - |
0.1064 | 20 | 5.1322 | - | - | - | - | - |
0.1330 | 25 | 4.1674 | - | - | - | - | - |
0.1596 | 30 | 4.1998 | - | - | - | - | - |
0.1862 | 35 | 3.4182 | - | - | - | - | - |
0.2128 | 40 | 4.1142 | - | - | - | - | - |
0.2394 | 45 | 2.5775 | - | - | - | - | - |
0.2660 | 50 | 3.3767 | - | - | - | - | - |
0.2926 | 55 | 2.5797 | - | - | - | - | - |
0.3191 | 60 | 3.1813 | - | - | - | - | - |
0.3457 | 65 | 3.7209 | - | - | - | - | - |
0.3723 | 70 | 2.2637 | - | - | - | - | - |
0.3989 | 75 | 2.2651 | - | - | - | - | - |
0.4255 | 80 | 2.3023 | - | - | - | - | - |
0.4521 | 85 | 2.3261 | - | - | - | - | - |
0.4787 | 90 | 1.947 | - | - | - | - | - |
0.5053 | 95 | 0.8502 | - | - | - | - | - |
0.5319 | 100 | 2.2405 | - | - | - | - | - |
0.5585 | 105 | 2.0157 | - | - | - | - | - |
0.5851 | 110 | 1.4405 | - | - | - | - | - |
0.6117 | 115 | 1.9714 | - | - | - | - | - |
0.6383 | 120 | 2.5212 | - | - | - | - | - |
0.6649 | 125 | 2.734 | - | - | - | - | - |
0.6915 | 130 | 1.9357 | - | - | - | - | - |
0.7181 | 135 | 1.1727 | - | - | - | - | - |
0.7447 | 140 | 1.9789 | - | - | - | - | - |
0.7713 | 145 | 1.6362 | - | - | - | - | - |
0.7979 | 150 | 1.7356 | - | - | - | - | - |
0.8245 | 155 | 1.916 | - | - | - | - | - |
0.8511 | 160 | 2.0372 | - | - | - | - | - |
0.8777 | 165 | 1.5705 | - | - | - | - | - |
0.9043 | 170 | 1.9393 | - | - | - | - | - |
0.9309 | 175 | 1.6289 | - | - | - | - | - |
0.9574 | 180 | 2.8158 | - | - | - | - | - |
0.9840 | 185 | 1.1869 | - | - | - | - | - |
1.0 | 188 | - | 0.9319 | 0.9438 | 0.9401 | 0.9173 | 0.9421 |
1.0106 | 190 | 1.1572 | - | - | - | - | - |
1.0372 | 195 | 1.4815 | - | - | - | - | - |
1.0638 | 200 | 1.6742 | - | - | - | - | - |
1.0904 | 205 | 0.9434 | - | - | - | - | - |
1.1170 | 210 | 1.6141 | - | - | - | - | - |
1.1436 | 215 | 0.7478 | - | - | - | - | - |
1.1702 | 220 | 1.4812 | - | - | - | - | - |
1.1968 | 225 | 1.8121 | - | - | - | - | - |
1.2234 | 230 | 1.2595 | - | - | - | - | - |
1.25 | 235 | 1.8326 | - | - | - | - | - |
1.2766 | 240 | 1.3828 | - | - | - | - | - |
1.3032 | 245 | 1.5385 | - | - | - | - | - |
1.3298 | 250 | 1.1213 | - | - | - | - | - |
1.3564 | 255 | 1.0444 | - | - | - | - | - |
1.3830 | 260 | 0.3848 | - | - | - | - | - |
1.4096 | 265 | 0.8369 | - | - | - | - | - |
1.4362 | 270 | 1.682 | - | - | - | - | - |
1.4628 | 275 | 1.9625 | - | - | - | - | - |
1.4894 | 280 | 2.0732 | - | - | - | - | - |
1.5160 | 285 | 1.8939 | - | - | - | - | - |
1.5426 | 290 | 1.5621 | - | - | - | - | - |
1.5691 | 295 | 1.5474 | - | - | - | - | - |
1.5957 | 300 | 2.1111 | - | - | - | - | - |
1.6223 | 305 | 1.8619 | - | - | - | - | - |
1.6489 | 310 | 1.1091 | - | - | - | - | - |
1.6755 | 315 | 1.8127 | - | - | - | - | - |
1.7021 | 320 | 0.8599 | - | - | - | - | - |
1.7287 | 325 | 0.9553 | - | - | - | - | - |
1.7553 | 330 | 1.2444 | - | - | - | - | - |
1.7819 | 335 | 1.6786 | - | - | - | - | - |
1.8085 | 340 | 1.2092 | - | - | - | - | - |
1.8351 | 345 | 0.8824 | - | - | - | - | - |
1.8617 | 350 | 0.4448 | - | - | - | - | - |
1.8883 | 355 | 1.116 | - | - | - | - | - |
1.9149 | 360 | 1.587 | - | - | - | - | - |
1.9415 | 365 | 0.7235 | - | - | - | - | - |
1.9681 | 370 | 0.9446 | - | - | - | - | - |
1.9947 | 375 | 1.0066 | - | - | - | - | - |
2.0 | 376 | - | 0.9570 | 0.9523 | 0.9501 | 0.9501 | 0.9549 |
2.0213 | 380 | 1.3895 | - | - | - | - | - |
2.0479 | 385 | 1.0259 | - | - | - | - | - |
2.0745 | 390 | 0.9961 | - | - | - | - | - |
2.1011 | 395 | 1.4164 | - | - | - | - | - |
2.1277 | 400 | 0.5188 | - | - | - | - | - |
2.1543 | 405 | 0.2965 | - | - | - | - | - |
2.1809 | 410 | 0.4351 | - | - | - | - | - |
2.2074 | 415 | 0.7546 | - | - | - | - | - |
2.2340 | 420 | 1.9408 | - | - | - | - | - |
2.2606 | 425 | 1.0056 | - | - | - | - | - |
2.2872 | 430 | 1.3175 | - | - | - | - | - |
2.3138 | 435 | 0.9397 | - | - | - | - | - |
2.3404 | 440 | 1.4308 | - | - | - | - | - |
2.3670 | 445 | 0.8647 | - | - | - | - | - |
2.3936 | 450 | 0.8917 | - | - | - | - | - |
2.4202 | 455 | 0.7922 | - | - | - | - | - |
2.4468 | 460 | 1.1815 | - | - | - | - | - |
2.4734 | 465 | 0.8071 | - | - | - | - | - |
2.5 | 470 | 0.1601 | - | - | - | - | - |
2.5266 | 475 | 0.7533 | - | - | - | - | - |
2.5532 | 480 | 1.351 | - | - | - | - | - |
2.5798 | 485 | 1.2948 | - | - | - | - | - |
2.6064 | 490 | 1.4087 | - | - | - | - | - |
2.6330 | 495 | 2.2427 | - | - | - | - | - |
2.6596 | 500 | 0.4735 | - | - | - | - | - |
2.6862 | 505 | 0.8377 | - | - | - | - | - |
2.7128 | 510 | 0.525 | - | - | - | - | - |
2.7394 | 515 | 0.8455 | - | - | - | - | - |
2.7660 | 520 | 2.458 | - | - | - | - | - |
2.7926 | 525 | 1.2906 | - | - | - | - | - |
2.8191 | 530 | 1.0234 | - | - | - | - | - |
2.8457 | 535 | 0.3733 | - | - | - | - | - |
2.8723 | 540 | 0.388 | - | - | - | - | - |
2.8989 | 545 | 1.2155 | - | - | - | - | - |
2.9255 | 550 | 1.0288 | - | - | - | - | - |
2.9521 | 555 | 1.0578 | - | - | - | - | - |
2.9787 | 560 | 0.1793 | - | - | - | - | - |
3.0 | 564 | - | 0.9653 | 0.9714 | 0.9705 | 0.9609 | 0.9679 |
3.0053 | 565 | 1.0141 | - | - | - | - | - |
3.0319 | 570 | 0.6978 | - | - | - | - | - |
3.0585 | 575 | 0.6066 | - | - | - | - | - |
3.0851 | 580 | 0.2444 | - | - | - | - | - |
3.1117 | 585 | 0.581 | - | - | - | - | - |
3.1383 | 590 | 1.3544 | - | - | - | - | - |
3.1649 | 595 | 0.9379 | - | - | - | - | - |
3.1915 | 600 | 1.0088 | - | - | - | - | - |
3.2181 | 605 | 1.6689 | - | - | - | - | - |
3.2447 | 610 | 0.3204 | - | - | - | - | - |
3.2713 | 615 | 0.5433 | - | - | - | - | - |
3.2979 | 620 | 0.7225 | - | - | - | - | - |
3.3245 | 625 | 1.7695 | - | - | - | - | - |
3.3511 | 630 | 0.7472 | - | - | - | - | - |
3.3777 | 635 | 1.0883 | - | - | - | - | - |
3.4043 | 640 | 1.1863 | - | - | - | - | - |
3.4309 | 645 | 1.7163 | - | - | - | - | - |
3.4574 | 650 | 2.8196 | - | - | - | - | - |
3.4840 | 655 | 1.5015 | - | - | - | - | - |
3.5106 | 660 | 1.3862 | - | - | - | - | - |
3.5372 | 665 | 0.775 | - | - | - | - | - |
3.5638 | 670 | 1.2385 | - | - | - | - | - |
3.5904 | 675 | 0.9472 | - | - | - | - | - |
3.6170 | 680 | 0.6458 | - | - | - | - | - |
3.6436 | 685 | 0.8308 | - | - | - | - | - |
3.6702 | 690 | 1.0864 | - | - | - | - | - |
3.6968 | 695 | 1.0715 | - | - | - | - | - |
3.7234 | 700 | 1.5082 | - | - | - | - | - |
3.75 | 705 | 0.5028 | - | - | - | - | - |
3.7766 | 710 | 1.1525 | - | - | - | - | - |
3.8032 | 715 | 0.5829 | - | - | - | - | - |
3.8298 | 720 | 0.6168 | - | - | - | - | - |
3.8564 | 725 | 1.0185 | - | - | - | - | - |
3.8830 | 730 | 1.2545 | - | - | - | - | - |
3.9096 | 735 | 0.5604 | - | - | - | - | - |
3.9362 | 740 | 0.6879 | - | - | - | - | - |
3.9628 | 745 | 0.9936 | - | - | - | - | - |
3.9894 | 750 | 0.5786 | - | - | - | - | - |
4.0 | 752 | - | 0.9774 | 0.9818 | 0.9731 | 0.98 | 0.9792 |
4.0160 | 755 | 0.908 | - | - | - | - | - |
4.0426 | 760 | 0.988 | - | - | - | - | - |
4.0691 | 765 | 0.2616 | - | - | - | - | - |
4.0957 | 770 | 1.1475 | - | - | - | - | - |
4.1223 | 775 | 1.7832 | - | - | - | - | - |
4.1489 | 780 | 0.7522 | - | - | - | - | - |
4.1755 | 785 | 1.4473 | - | - | - | - | - |
4.2021 | 790 | 0.7194 | - | - | - | - | - |
4.2287 | 795 | 0.0855 | - | - | - | - | - |
4.2553 | 800 | 1.151 | - | - | - | - | - |
4.2819 | 805 | 1.5109 | - | - | - | - | - |
4.3085 | 810 | 0.7462 | - | - | - | - | - |
4.3351 | 815 | 0.4697 | - | - | - | - | - |
4.3617 | 820 | 1.1215 | - | - | - | - | - |
4.3883 | 825 | 1.3527 | - | - | - | - | - |
4.4149 | 830 | 0.8995 | - | - | - | - | - |
4.4415 | 835 | 1.0011 | - | - | - | - | - |
4.4681 | 840 | 1.1168 | - | - | - | - | - |
4.4947 | 845 | 1.3105 | - | - | - | - | - |
4.5213 | 850 | 0.2855 | - | - | - | - | - |
4.5479 | 855 | 1.3223 | - | - | - | - | - |
4.5745 | 860 | 0.6377 | - | - | - | - | - |
4.6011 | 865 | 1.2196 | - | - | - | - | - |
4.6277 | 870 | 1.257 | - | - | - | - | - |
4.6543 | 875 | 0.93 | - | - | - | - | - |
4.6809 | 880 | 0.8831 | - | - | - | - | - |
4.7074 | 885 | 0.23 | - | - | - | - | - |
4.7340 | 890 | 0.9771 | - | - | - | - | - |
4.7606 | 895 | 1.026 | - | - | - | - | - |
4.7872 | 900 | 1.4671 | - | - | - | - | - |
4.8138 | 905 | 0.8719 | - | - | - | - | - |
4.8404 | 910 | 0.9108 | - | - | - | - | - |
4.8670 | 915 | 1.359 | - | - | - | - | - |
4.8936 | 920 | 1.3237 | - | - | - | - | - |
4.9202 | 925 | 0.6591 | - | - | - | - | - |
4.9468 | 930 | 0.405 | - | - | - | - | - |
4.9734 | 935 | 1.1984 | - | - | - | - | - |
5.0 | 940 | 0.5747 | 0.9774 | 0.9818 | 0.9731 | 0.9774 | 0.9766 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for joshuapb/fine-tuned-matryoshka-1500
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.953
- Cosine Accuracy@3 on dim 768self-reported1.000
- Cosine Accuracy@5 on dim 768self-reported1.000
- Cosine Accuracy@10 on dim 768self-reported1.000
- Cosine Precision@1 on dim 768self-reported0.953
- Cosine Precision@3 on dim 768self-reported0.333
- Cosine Precision@5 on dim 768self-reported0.200
- Cosine Precision@10 on dim 768self-reported0.100
- Cosine Recall@1 on dim 768self-reported0.953
- Cosine Recall@3 on dim 768self-reported1.000