BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-200")
# Run inference
sentences = [
'Fig. 1. Knowledge categorization of close-book QA examples based on how likely the model outputs correct answers. (Image source: Gekhman et al. 2024)\nSome interesting observations of the experiments, where dev set accuracy is considered a proxy for hallucinations.\n\nUnknown examples are fitted substantially slower than Known.\nThe best dev performance is obtained when the LLM fits the majority of the Known training examples but only a few of the Unknown ones. The model starts to hallucinate when it learns most of the Unknown examples.\nAmong Known examples, MaybeKnown cases result in better overall performance, more essential than HighlyKnown ones.',
'In what ways does the fitting speed of examples that are not previously encountered differ from that of familiar examples, and how does this variation influence the overall accuracy of the model on the development set?',
'How do the results presented by Gekhman et al. in their 2024 study inform our understanding of the reliability metrics associated with large language models (LLMs) when subjected to fine-tuning with novel datasets?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8802 |
cosine_accuracy@3 | 0.9688 |
cosine_accuracy@5 | 0.9844 |
cosine_accuracy@10 | 0.9948 |
cosine_precision@1 | 0.8802 |
cosine_precision@3 | 0.3229 |
cosine_precision@5 | 0.1969 |
cosine_precision@10 | 0.0995 |
cosine_recall@1 | 0.8802 |
cosine_recall@3 | 0.9688 |
cosine_recall@5 | 0.9844 |
cosine_recall@10 | 0.9948 |
cosine_ndcg@10 | 0.9433 |
cosine_mrr@10 | 0.9261 |
cosine_map@100 | 0.9264 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8698 |
cosine_accuracy@3 | 0.974 |
cosine_accuracy@5 | 0.974 |
cosine_accuracy@10 | 0.9948 |
cosine_precision@1 | 0.8698 |
cosine_precision@3 | 0.3247 |
cosine_precision@5 | 0.1948 |
cosine_precision@10 | 0.0995 |
cosine_recall@1 | 0.8698 |
cosine_recall@3 | 0.974 |
cosine_recall@5 | 0.974 |
cosine_recall@10 | 0.9948 |
cosine_ndcg@10 | 0.94 |
cosine_mrr@10 | 0.9216 |
cosine_map@100 | 0.9221 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8698 |
cosine_accuracy@3 | 0.974 |
cosine_accuracy@5 | 0.9844 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.8698 |
cosine_precision@3 | 0.3247 |
cosine_precision@5 | 0.1969 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.8698 |
cosine_recall@3 | 0.974 |
cosine_recall@5 | 0.9844 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.942 |
cosine_mrr@10 | 0.9227 |
cosine_map@100 | 0.9227 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8542 |
cosine_accuracy@3 | 0.9583 |
cosine_accuracy@5 | 0.9688 |
cosine_accuracy@10 | 0.9948 |
cosine_precision@1 | 0.8542 |
cosine_precision@3 | 0.3194 |
cosine_precision@5 | 0.1937 |
cosine_precision@10 | 0.0995 |
cosine_recall@1 | 0.8542 |
cosine_recall@3 | 0.9583 |
cosine_recall@5 | 0.9688 |
cosine_recall@10 | 0.9948 |
cosine_ndcg@10 | 0.9306 |
cosine_mrr@10 | 0.9094 |
cosine_map@100 | 0.9099 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7917 |
cosine_accuracy@3 | 0.9531 |
cosine_accuracy@5 | 0.974 |
cosine_accuracy@10 | 0.9896 |
cosine_precision@1 | 0.7917 |
cosine_precision@3 | 0.3177 |
cosine_precision@5 | 0.1948 |
cosine_precision@10 | 0.099 |
cosine_recall@1 | 0.7917 |
cosine_recall@3 | 0.9531 |
cosine_recall@5 | 0.974 |
cosine_recall@10 | 0.9896 |
cosine_ndcg@10 | 0.9004 |
cosine_mrr@10 | 0.8706 |
cosine_map@100 | 0.8713 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.1load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.2 | 5 | 5.2225 | - | - | - | - | - |
0.4 | 10 | 4.956 | - | - | - | - | - |
0.6 | 15 | 3.6388 | - | - | - | - | - |
0.8 | 20 | 3.1957 | - | - | - | - | - |
1.0 | 25 | 2.6928 | 0.8661 | 0.8770 | 0.8754 | 0.8312 | 0.8871 |
1.2 | 30 | 2.5565 | - | - | - | - | - |
1.4 | 35 | 1.5885 | - | - | - | - | - |
1.6 | 40 | 2.1406 | - | - | - | - | - |
1.8 | 45 | 2.193 | - | - | - | - | - |
2.0 | 50 | 1.326 | 0.8944 | 0.9110 | 0.9028 | 0.8615 | 0.9037 |
2.2 | 55 | 2.6832 | - | - | - | - | - |
2.4 | 60 | 1.0584 | - | - | - | - | - |
2.6 | 65 | 0.8853 | - | - | - | - | - |
2.8 | 70 | 1.7129 | - | - | - | - | - |
3.0 | 75 | 2.1856 | 0.9106 | 0.9293 | 0.9075 | 0.8778 | 0.9266 |
3.2 | 80 | 1.7658 | - | - | - | - | - |
3.4 | 85 | 1.9783 | - | - | - | - | - |
3.6 | 90 | 1.9583 | - | - | - | - | - |
3.8 | 95 | 1.2396 | - | - | - | - | - |
4.0 | 100 | 1.1901 | 0.9073 | 0.9253 | 0.9151 | 0.8750 | 0.9312 |
4.2 | 105 | 2.6547 | - | - | - | - | - |
4.4 | 110 | 1.3485 | - | - | - | - | - |
4.6 | 115 | 1.0767 | - | - | - | - | - |
4.8 | 120 | 0.6663 | - | - | - | - | - |
5.0 | 125 | 1.3869 | 0.9099 | 0.9227 | 0.9221 | 0.8713 | 0.9264 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for joshuapb/fine-tuned-matryoshka-200
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.880
- Cosine Accuracy@3 on dim 768self-reported0.969
- Cosine Accuracy@5 on dim 768self-reported0.984
- Cosine Accuracy@10 on dim 768self-reported0.995
- Cosine Precision@1 on dim 768self-reported0.880
- Cosine Precision@3 on dim 768self-reported0.323
- Cosine Precision@5 on dim 768self-reported0.197
- Cosine Precision@10 on dim 768self-reported0.099
- Cosine Recall@1 on dim 768self-reported0.880
- Cosine Recall@3 on dim 768self-reported0.969