File size: 5,911 Bytes
c1e6cb6 e453b4f 6e68e4c c1e6cb6 6e68e4c c1e6cb6 6e68e4c e453b4f b6521e7 6e68e4c c1e6cb6 f12fd52 c1e6cb6 1a5afea f74ce02 6e68e4c fa3e742 f12fd52 6e68e4c c403df6 f12fd52 6e68e4c f12fd52 6e68e4c c403df6 6e68e4c f12fd52 6e68e4c c1e6cb6 558125f e453b4f c1e6cb6 f12fd52 c1e6cb6 e453b4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
library_name: transformers
license: mit
language:
- fr
- en
tags:
- french
- chocolatine
datasets:
- jpacifico/french-orca-dpo-pairs-revised
pipeline_tag: text-generation
---
### Chocolatine-3B-Instruct-DPO-Revised
DPO fine-tuned of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) (3.82B params)
using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.
Training in French also improves the model in English, surpassing the performances of its base model.
Window context = 4k tokens
### Benchmarks
Chocolatine is the **best-performing 3B model** on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) (july 2024)
5th best < 30B params (average benchmarks).
![image/png](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Assets/openllm_choco3b_revised.png?raw=false)
| Metric |Value|
|-------------------|----:|
|Avg. |27.63|
|IFEval (0-Shot) |56.23|
|BBH (3-Shot) |37.16|
|MATH Lvl 5 (4-Shot)|14.5|
|GPQA (0-shot) |9.62|
|MuSR (0-shot) |15.1|
|MMLU-PRO (5-shot) |33.21|
### MT-Bench-French
Chocolatine-3B-Instruct-DPO-Revised is outperforming GPT-3.5-Turbo on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french) by Bofeng Huang,
used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench)
```
########## First turn ##########
score
model turn
gpt-3.5-turbo 1 8.1375
Chocolatine-3B-Instruct-DPO-Revised 1 7.9875
Daredevil-8B 1 7.8875
Daredevil-8B-abliterated 1 7.8375
Chocolatine-3B-Instruct-DPO-v1.0 1 7.6875
NeuralDaredevil-8B-abliterated 1 7.6250
Phi-3-mini-4k-instruct 1 7.2125
Meta-Llama-3-8B-Instruct 1 7.1625
vigostral-7b-chat 1 6.7875
Mistral-7B-Instruct-v0.3 1 6.7500
Mistral-7B-Instruct-v0.2 1 6.2875
French-Alpaca-7B-Instruct_beta 1 5.6875
vigogne-2-7b-chat 1 5.6625
vigogne-2-7b-instruct 1 5.1375
########## Second turn ##########
score
model turn
Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
gpt-3.5-turbo 2 7.679167
Chocolatine-3B-Instruct-DPO-v1.0 2 7.612500
NeuralDaredevil-8B-abliterated 2 7.125000
Daredevil-8B 2 7.087500
Daredevil-8B-abliterated 2 6.873418
Meta-Llama-3-8B-Instruct 2 6.800000
Mistral-7B-Instruct-v0.2 2 6.512500
Mistral-7B-Instruct-v0.3 2 6.500000
Phi-3-mini-4k-instruct 2 6.487500
vigostral-7b-chat 2 6.162500
French-Alpaca-7B-Instruct_beta 2 5.487395
vigogne-2-7b-chat 2 2.775000
vigogne-2-7b-instruct 2 2.240506
########## Average ##########
score
model
Chocolatine-3B-Instruct-DPO-Revised 7.962500
gpt-3.5-turbo 7.908333
Chocolatine-3B-Instruct-DPO-v1.0 7.650000
Daredevil-8B 7.487500
NeuralDaredevil-8B-abliterated 7.375000
Daredevil-8B-abliterated 7.358491
Meta-Llama-3-8B-Instruct 6.981250
Phi-3-mini-4k-instruct 6.850000
Mistral-7B-Instruct-v0.3 6.625000
vigostral-7b-chat 6.475000
Mistral-7B-Instruct-v0.2 6.400000
French-Alpaca-7B-Instruct_beta 5.587866
vigogne-2-7b-chat 4.218750
vigogne-2-7b-instruct 3.698113
```
### Usage
You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_3B_inference_test_colab.ipynb)
You can also run Chocolatine using the following code:
```python
import transformers
from transformers import AutoTokenizer
# Format prompt
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Create pipeline
pipeline = transformers.pipeline(
"text-generation",
model=new_model,
tokenizer=tokenizer
)
# Generate text
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
```
* **4-bit quantized version** is available here : [jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q4_K_M-GGUF](https://huggingface.co/jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q4_K_M-GGUF)
* **Ollama**: [jpacifico/chocolatine-3b](https://ollama.com/jpacifico/chocolatine-3b)
```bash
ollama run jpacifico/chocolatine-3b
```
Ollama *Modelfile* example :
```bash
FROM ./chocolatine-3b-instruct-dpo-revised-q4_k_m.gguf
TEMPLATE """{{ if .System }}<|system|>
{{ .System }}<|end|>
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|end|>
{{ end }}<|assistant|>
{{ .Response }}<|end|>
"""
PARAMETER stop """{"stop": ["<|end|>","<|user|>","<|assistant|>"]}"""
SYSTEM """You are a friendly assistant called Chocolatine."""
```
### Limitations
The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanism.
- **Developed by:** Jonathan Pacifico, 2024
- **Model type:** LLM
- **Language(s) (NLP):** French, English
- **License:** MIT |