Built with Axolotl

See axolotl config

axolotl version: 0.6.0

# This works!

base_model: meta-llama/Llama-3.1-405B-Instruct
hub_model_id: jplhughes2/1a_meta-llama-Llama-3.1-405B-Instruct-fsdp
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: 1a_meta-llama-Llama-3.1-405B-Instruct-fsdp
output_dir: ./outputs/out/1a_meta-llama-Llama-3.1-405B-Instruct-fsdp
# base_model:
# hub_model_id:
# load_in_8bit:
# load_in_4bit:
# adapter:
# wandb_name:
# output_dir:

tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false

datasets:
  - path: jplhughes2/docs_only_30k_filtered
    type: completion
    field: text
    split: train
dataset_prepared_path: last_run_prepared
# val_set_size: 0.05
test_datasets:
  - path: jplhughes2/docs_only_val_5k_filtered
    type: completion
    field: text
    split: train
save_safetensors: true

sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true

lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true

wandb_mode:
wandb_project: alignment-faking
wandb_entity: academicsnyuperez
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: false
bf16: true
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: false
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:
  pad_token: <|finetune_right_pad_id|>

1a_meta-llama-Llama-3.1-405B-Instruct-fsdp

This model is a fine-tuned version of meta-llama/Llama-3.1-405B-Instruct on the jplhughes2/docs_only_30k_filtered dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5761

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
1.323 0.0016 1 1.3262
0.6147 0.3344 204 0.6174
0.5836 0.6689 408 0.5761

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.4.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for jplhughes2/1a_meta-llama-Llama-3.1-405B-Instruct-fsdp

Adapter
(4)
this model

Dataset used to train jplhughes2/1a_meta-llama-Llama-3.1-405B-Instruct-fsdp