mms-1b-lug-eng / README.md
jq's picture
jq/mms-1b-lug
7e8647a verified
|
raw
history blame
2.32 kB
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: stt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# stt
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1619
- Wer Lug: 0.161
- Wer Eng: 0.096
- Wer Mean: 0.129
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Lug | Wer Eng | Wer Mean |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:--------:|
| 0.1876 | 0.1 | 500 | 0.1711 | 0.183 | 0.106 | 0.144 |
| 0.1971 | 0.2 | 1000 | 0.1702 | 0.172 | 0.106 | 0.139 |
| 0.1898 | 0.3 | 1500 | 0.1687 | 0.168 | 0.108 | 0.138 |
| 0.1903 | 0.4 | 2000 | 0.1686 | 0.165 | 0.103 | 0.134 |
| 0.1888 | 0.5 | 2500 | 0.1663 | 0.165 | 0.096 | 0.131 |
| 0.1908 | 1.1 | 3000 | 0.1637 | 0.16 | 0.095 | 0.127 |
| 0.1792 | 1.2 | 3500 | 0.1642 | 0.157 | 0.094 | 0.125 |
| 0.1963 | 1.3 | 4000 | 0.1625 | 0.158 | 0.095 | 0.127 |
| 0.184 | 1.4 | 4500 | 0.1623 | 0.158 | 0.094 | 0.126 |
| 0.1888 | 1.5 | 5000 | 0.1619 | 0.161 | 0.096 | 0.129 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2