mms-1b-lug-eng / README.md
jq's picture
jq/mms-1b-lug
7e8647a verified
metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - generator
model-index:
  - name: stt
    results: []

stt

This model is a fine-tuned version of facebook/mms-1b-all on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1619
  • Wer Lug: 0.161
  • Wer Eng: 0.096
  • Wer Mean: 0.129

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Lug Wer Eng Wer Mean
0.1876 0.1 500 0.1711 0.183 0.106 0.144
0.1971 0.2 1000 0.1702 0.172 0.106 0.139
0.1898 0.3 1500 0.1687 0.168 0.108 0.138
0.1903 0.4 2000 0.1686 0.165 0.103 0.134
0.1888 0.5 2500 0.1663 0.165 0.096 0.131
0.1908 1.1 3000 0.1637 0.16 0.095 0.127
0.1792 1.2 3500 0.1642 0.157 0.094 0.125
0.1963 1.3 4000 0.1625 0.158 0.095 0.127
0.184 1.4 4500 0.1623 0.158 0.094 0.126
0.1888 1.5 5000 0.1619 0.161 0.096 0.129

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2