MBERT_uncased_SquaredBCEWithLogitsLoss_lora
This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2549
- Accuracy: 0.626
- F1: 0.7674
- Precision: 0.6980
- Recall: 0.8522
- Roc Auc: 0.4424
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc |
---|---|---|---|---|---|---|---|---|
No log | 0.992 | 31 | 0.2593 | 0.333 | 0.4007 | 0.5733 | 0.3080 | 0.3533 |
No log | 1.984 | 62 | 0.2560 | 0.584 | 0.7309 | 0.6873 | 0.7804 | 0.4246 |
No log | 2.976 | 93 | 0.2549 | 0.626 | 0.7674 | 0.6980 | 0.8522 | 0.4424 |
Framework versions
- PEFT 0.13.3.dev0
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 4
Model tree for jsl5710/MBERT_uncased_SquaredBCEWithLogitsLoss_lora
Base model
google-bert/bert-base-multilingual-uncased