Edit model card

MBERT_uncased_WeightedFocalLoss_lora

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0414
  • Accuracy: 0.708
  • F1: 0.8290
  • Precision: 0.7195
  • Recall: 0.9779
  • Roc Auc: 0.4890

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Roc Auc
No log 0.992 31 0.0430 0.62 0.7613 0.6982 0.8370 0.4439
No log 1.984 62 0.0417 0.699 0.8226 0.7174 0.9641 0.4839
No log 2.976 93 0.0414 0.708 0.8290 0.7195 0.9779 0.4890

Framework versions

  • PEFT 0.13.3.dev0
  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for jsl5710/MBERT_uncased_WeightedFocalLoss_lora

Adapter
(6)
this model