MBERT_uncased_WeightedFocalLoss_lora
This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0414
- Accuracy: 0.708
- F1: 0.8290
- Precision: 0.7195
- Recall: 0.9779
- Roc Auc: 0.4890
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc |
---|---|---|---|---|---|---|---|---|
No log | 0.992 | 31 | 0.0430 | 0.62 | 0.7613 | 0.6982 | 0.8370 | 0.4439 |
No log | 1.984 | 62 | 0.0417 | 0.699 | 0.8226 | 0.7174 | 0.9641 | 0.4839 |
No log | 2.976 | 93 | 0.0414 | 0.708 | 0.8290 | 0.7195 | 0.9779 | 0.4890 |
Framework versions
- PEFT 0.13.3.dev0
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Model tree for jsl5710/MBERT_uncased_WeightedFocalLoss_lora
Base model
google-bert/bert-base-multilingual-uncased