jspringer's picture
add readme
4beb490
metadata
tags:
  - mteb
model-index:
  - name: mlm
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 82.97014925373135
          - type: ap
            value: 49.6288385893607
          - type: f1
            value: 77.58957447993662
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 90.975425
          - type: ap
            value: 87.57349835900825
          - type: f1
            value: 90.96732416386632
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 48.708
          - type: f1
            value: 47.736228936979586
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.006
          - type: map_at_10
            value: 49.268
          - type: map_at_100
            value: 49.903999999999996
          - type: map_at_1000
            value: 49.909
          - type: map_at_3
            value: 44.334
          - type: map_at_5
            value: 47.374
          - type: mrr_at_1
            value: 32.788000000000004
          - type: mrr_at_10
            value: 49.707
          - type: mrr_at_100
            value: 50.346999999999994
          - type: mrr_at_1000
            value: 50.352
          - type: mrr_at_3
            value: 44.95
          - type: mrr_at_5
            value: 47.766999999999996
          - type: ndcg_at_1
            value: 32.006
          - type: ndcg_at_10
            value: 58.523
          - type: ndcg_at_100
            value: 61.095
          - type: ndcg_at_1000
            value: 61.190999999999995
          - type: ndcg_at_3
            value: 48.431000000000004
          - type: ndcg_at_5
            value: 53.94
          - type: precision_at_1
            value: 32.006
          - type: precision_at_10
            value: 8.791
          - type: precision_at_100
            value: 0.989
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 20.104
          - type: precision_at_5
            value: 14.751
          - type: recall_at_1
            value: 32.006
          - type: recall_at_10
            value: 87.909
          - type: recall_at_100
            value: 98.86200000000001
          - type: recall_at_1000
            value: 99.57300000000001
          - type: recall_at_3
            value: 60.313
          - type: recall_at_5
            value: 73.75500000000001
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 47.01500173547629
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 43.52209238193538
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 64.1348784470504
          - type: mrr
            value: 76.93762916062083
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 87.8322696692348
          - type: cos_sim_spearman
            value: 86.53751398463592
          - type: euclidean_pearson
            value: 86.1435544054336
          - type: euclidean_spearman
            value: 86.70799979698164
          - type: manhattan_pearson
            value: 86.1206703865016
          - type: manhattan_spearman
            value: 86.47004256773585
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 88.1461038961039
          - type: f1
            value: 88.09877611214092
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 35.53021718892608
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 35.34236915611622
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 36.435
          - type: map_at_10
            value: 49.437999999999995
          - type: map_at_100
            value: 51.105999999999995
          - type: map_at_1000
            value: 51.217999999999996
          - type: map_at_3
            value: 44.856
          - type: map_at_5
            value: 47.195
          - type: mrr_at_1
            value: 45.78
          - type: mrr_at_10
            value: 56.302
          - type: mrr_at_100
            value: 56.974000000000004
          - type: mrr_at_1000
            value: 57.001999999999995
          - type: mrr_at_3
            value: 53.6
          - type: mrr_at_5
            value: 55.059999999999995
          - type: ndcg_at_1
            value: 44.921
          - type: ndcg_at_10
            value: 56.842000000000006
          - type: ndcg_at_100
            value: 61.586
          - type: ndcg_at_1000
            value: 63.039
          - type: ndcg_at_3
            value: 50.612
          - type: ndcg_at_5
            value: 53.181
          - type: precision_at_1
            value: 44.921
          - type: precision_at_10
            value: 11.245
          - type: precision_at_100
            value: 1.7069999999999999
          - type: precision_at_1000
            value: 0.216
          - type: precision_at_3
            value: 24.224999999999998
          - type: precision_at_5
            value: 17.511
          - type: recall_at_1
            value: 36.435
          - type: recall_at_10
            value: 70.998
          - type: recall_at_100
            value: 89.64
          - type: recall_at_1000
            value: 98.654
          - type: recall_at_3
            value: 53.034000000000006
          - type: recall_at_5
            value: 60.41
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 33.371
          - type: map_at_10
            value: 45.301
          - type: map_at_100
            value: 46.663
          - type: map_at_1000
            value: 46.791
          - type: map_at_3
            value: 41.79
          - type: map_at_5
            value: 43.836999999999996
          - type: mrr_at_1
            value: 42.611
          - type: mrr_at_10
            value: 51.70400000000001
          - type: mrr_at_100
            value: 52.342
          - type: mrr_at_1000
            value: 52.38
          - type: mrr_at_3
            value: 49.374
          - type: mrr_at_5
            value: 50.82
          - type: ndcg_at_1
            value: 42.166
          - type: ndcg_at_10
            value: 51.49
          - type: ndcg_at_100
            value: 56.005
          - type: ndcg_at_1000
            value: 57.748
          - type: ndcg_at_3
            value: 46.769
          - type: ndcg_at_5
            value: 49.155
          - type: precision_at_1
            value: 42.166
          - type: precision_at_10
            value: 9.841
          - type: precision_at_100
            value: 1.569
          - type: precision_at_1000
            value: 0.202
          - type: precision_at_3
            value: 22.803
          - type: precision_at_5
            value: 16.229
          - type: recall_at_1
            value: 33.371
          - type: recall_at_10
            value: 62.52799999999999
          - type: recall_at_100
            value: 81.269
          - type: recall_at_1000
            value: 91.824
          - type: recall_at_3
            value: 48.759
          - type: recall_at_5
            value: 55.519
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 41.421
          - type: map_at_10
            value: 55.985
          - type: map_at_100
            value: 56.989999999999995
          - type: map_at_1000
            value: 57.028
          - type: map_at_3
            value: 52.271
          - type: map_at_5
            value: 54.517
          - type: mrr_at_1
            value: 47.272999999999996
          - type: mrr_at_10
            value: 59.266
          - type: mrr_at_100
            value: 59.821999999999996
          - type: mrr_at_1000
            value: 59.839
          - type: mrr_at_3
            value: 56.677
          - type: mrr_at_5
            value: 58.309999999999995
          - type: ndcg_at_1
            value: 47.147
          - type: ndcg_at_10
            value: 62.596
          - type: ndcg_at_100
            value: 66.219
          - type: ndcg_at_1000
            value: 66.886
          - type: ndcg_at_3
            value: 56.558
          - type: ndcg_at_5
            value: 59.805
          - type: precision_at_1
            value: 47.147
          - type: precision_at_10
            value: 10.245
          - type: precision_at_100
            value: 1.302
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 25.663999999999998
          - type: precision_at_5
            value: 17.793
          - type: recall_at_1
            value: 41.421
          - type: recall_at_10
            value: 78.77499999999999
          - type: recall_at_100
            value: 93.996
          - type: recall_at_1000
            value: 98.60600000000001
          - type: recall_at_3
            value: 62.891
          - type: recall_at_5
            value: 70.819
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.517999999999997
          - type: map_at_10
            value: 37.468
          - type: map_at_100
            value: 38.667
          - type: map_at_1000
            value: 38.743
          - type: map_at_3
            value: 34.524
          - type: map_at_5
            value: 36.175000000000004
          - type: mrr_at_1
            value: 29.378999999999998
          - type: mrr_at_10
            value: 39.54
          - type: mrr_at_100
            value: 40.469
          - type: mrr_at_1000
            value: 40.522000000000006
          - type: mrr_at_3
            value: 36.685
          - type: mrr_at_5
            value: 38.324000000000005
          - type: ndcg_at_1
            value: 29.718
          - type: ndcg_at_10
            value: 43.091
          - type: ndcg_at_100
            value: 48.44
          - type: ndcg_at_1000
            value: 50.181
          - type: ndcg_at_3
            value: 37.34
          - type: ndcg_at_5
            value: 40.177
          - type: precision_at_1
            value: 29.718
          - type: precision_at_10
            value: 6.723
          - type: precision_at_100
            value: 0.992
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 16.083
          - type: precision_at_5
            value: 11.322000000000001
          - type: recall_at_1
            value: 27.517999999999997
          - type: recall_at_10
            value: 58.196999999999996
          - type: recall_at_100
            value: 82.07799999999999
          - type: recall_at_1000
            value: 94.935
          - type: recall_at_3
            value: 42.842
          - type: recall_at_5
            value: 49.58
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.621
          - type: map_at_10
            value: 30.175
          - type: map_at_100
            value: 31.496000000000002
          - type: map_at_1000
            value: 31.602000000000004
          - type: map_at_3
            value: 26.753
          - type: map_at_5
            value: 28.857
          - type: mrr_at_1
            value: 25.497999999999998
          - type: mrr_at_10
            value: 35.44
          - type: mrr_at_100
            value: 36.353
          - type: mrr_at_1000
            value: 36.412
          - type: mrr_at_3
            value: 32.275999999999996
          - type: mrr_at_5
            value: 34.434
          - type: ndcg_at_1
            value: 24.502
          - type: ndcg_at_10
            value: 36.423
          - type: ndcg_at_100
            value: 42.289
          - type: ndcg_at_1000
            value: 44.59
          - type: ndcg_at_3
            value: 30.477999999999998
          - type: ndcg_at_5
            value: 33.787
          - type: precision_at_1
            value: 24.502
          - type: precision_at_10
            value: 6.978
          - type: precision_at_100
            value: 1.139
          - type: precision_at_1000
            value: 0.145
          - type: precision_at_3
            value: 15.008
          - type: precision_at_5
            value: 11.468
          - type: recall_at_1
            value: 19.621
          - type: recall_at_10
            value: 50.516000000000005
          - type: recall_at_100
            value: 75.721
          - type: recall_at_1000
            value: 91.77199999999999
          - type: recall_at_3
            value: 34.695
          - type: recall_at_5
            value: 42.849
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 33.525
          - type: map_at_10
            value: 46.153
          - type: map_at_100
            value: 47.61
          - type: map_at_1000
            value: 47.715
          - type: map_at_3
            value: 42.397
          - type: map_at_5
            value: 44.487
          - type: mrr_at_1
            value: 42.445
          - type: mrr_at_10
            value: 52.174
          - type: mrr_at_100
            value: 52.986999999999995
          - type: mrr_at_1000
            value: 53.016
          - type: mrr_at_3
            value: 49.647000000000006
          - type: mrr_at_5
            value: 51.215999999999994
          - type: ndcg_at_1
            value: 42.156
          - type: ndcg_at_10
            value: 52.698
          - type: ndcg_at_100
            value: 58.167
          - type: ndcg_at_1000
            value: 59.71300000000001
          - type: ndcg_at_3
            value: 47.191
          - type: ndcg_at_5
            value: 49.745
          - type: precision_at_1
            value: 42.156
          - type: precision_at_10
            value: 9.682
          - type: precision_at_100
            value: 1.469
          - type: precision_at_1000
            value: 0.17700000000000002
          - type: precision_at_3
            value: 22.682
          - type: precision_at_5
            value: 16.035
          - type: recall_at_1
            value: 33.525
          - type: recall_at_10
            value: 66.142
          - type: recall_at_100
            value: 88.248
          - type: recall_at_1000
            value: 97.806
          - type: recall_at_3
            value: 50.541000000000004
          - type: recall_at_5
            value: 57.275
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.249000000000002
          - type: map_at_10
            value: 41.659
          - type: map_at_100
            value: 43.001
          - type: map_at_1000
            value: 43.094
          - type: map_at_3
            value: 37.607
          - type: map_at_5
            value: 39.662
          - type: mrr_at_1
            value: 36.301
          - type: mrr_at_10
            value: 47.482
          - type: mrr_at_100
            value: 48.251
          - type: mrr_at_1000
            value: 48.288
          - type: mrr_at_3
            value: 44.444
          - type: mrr_at_5
            value: 46.013999999999996
          - type: ndcg_at_1
            value: 35.616
          - type: ndcg_at_10
            value: 49.021
          - type: ndcg_at_100
            value: 54.362
          - type: ndcg_at_1000
            value: 55.864999999999995
          - type: ndcg_at_3
            value: 42.515
          - type: ndcg_at_5
            value: 45.053
          - type: precision_at_1
            value: 35.616
          - type: precision_at_10
            value: 9.372
          - type: precision_at_100
            value: 1.4120000000000001
          - type: precision_at_1000
            value: 0.172
          - type: precision_at_3
            value: 21.043
          - type: precision_at_5
            value: 14.84
          - type: recall_at_1
            value: 28.249000000000002
          - type: recall_at_10
            value: 65.514
          - type: recall_at_100
            value: 87.613
          - type: recall_at_1000
            value: 97.03
          - type: recall_at_3
            value: 47.21
          - type: recall_at_5
            value: 54.077
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.164583333333333
          - type: map_at_10
            value: 40.632000000000005
          - type: map_at_100
            value: 41.96875
          - type: map_at_1000
            value: 42.07508333333333
          - type: map_at_3
            value: 37.18458333333333
          - type: map_at_5
            value: 39.13700000000001
          - type: mrr_at_1
            value: 35.2035
          - type: mrr_at_10
            value: 45.28816666666666
          - type: mrr_at_100
            value: 46.11466666666667
          - type: mrr_at_1000
            value: 46.15741666666667
          - type: mrr_at_3
            value: 42.62925
          - type: mrr_at_5
            value: 44.18141666666667
          - type: ndcg_at_1
            value: 34.88958333333333
          - type: ndcg_at_10
            value: 46.90650000000001
          - type: ndcg_at_100
            value: 52.135333333333335
          - type: ndcg_at_1000
            value: 53.89766666666668
          - type: ndcg_at_3
            value: 41.32075
          - type: ndcg_at_5
            value: 44.02083333333333
          - type: precision_at_1
            value: 34.88958333333333
          - type: precision_at_10
            value: 8.392833333333332
          - type: precision_at_100
            value: 1.3085833333333334
          - type: precision_at_1000
            value: 0.16458333333333333
          - type: precision_at_3
            value: 19.361166666666666
          - type: precision_at_5
            value: 13.808416666666668
          - type: recall_at_1
            value: 29.164583333333333
          - type: recall_at_10
            value: 60.874666666666656
          - type: recall_at_100
            value: 83.21008333333334
          - type: recall_at_1000
            value: 95.09275000000001
          - type: recall_at_3
            value: 45.37591666666667
          - type: recall_at_5
            value: 52.367666666666665
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.682000000000002
          - type: map_at_10
            value: 37.913000000000004
          - type: map_at_100
            value: 39.037
          - type: map_at_1000
            value: 39.123999999999995
          - type: map_at_3
            value: 35.398
          - type: map_at_5
            value: 36.906
          - type: mrr_at_1
            value: 32.362
          - type: mrr_at_10
            value: 40.92
          - type: mrr_at_100
            value: 41.748000000000005
          - type: mrr_at_1000
            value: 41.81
          - type: mrr_at_3
            value: 38.701
          - type: mrr_at_5
            value: 39.936
          - type: ndcg_at_1
            value: 32.208999999999996
          - type: ndcg_at_10
            value: 42.84
          - type: ndcg_at_100
            value: 47.927
          - type: ndcg_at_1000
            value: 50.048
          - type: ndcg_at_3
            value: 38.376
          - type: ndcg_at_5
            value: 40.661
          - type: precision_at_1
            value: 32.208999999999996
          - type: precision_at_10
            value: 6.718
          - type: precision_at_100
            value: 1.012
          - type: precision_at_1000
            value: 0.127
          - type: precision_at_3
            value: 16.667
          - type: precision_at_5
            value: 11.503
          - type: recall_at_1
            value: 28.682000000000002
          - type: recall_at_10
            value: 54.872
          - type: recall_at_100
            value: 77.42999999999999
          - type: recall_at_1000
            value: 93.054
          - type: recall_at_3
            value: 42.577999999999996
          - type: recall_at_5
            value: 48.363
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.698
          - type: map_at_10
            value: 28.777
          - type: map_at_100
            value: 30.091
          - type: map_at_1000
            value: 30.209999999999997
          - type: map_at_3
            value: 25.874000000000002
          - type: map_at_5
            value: 27.438000000000002
          - type: mrr_at_1
            value: 24.295
          - type: mrr_at_10
            value: 33.077
          - type: mrr_at_100
            value: 34.036
          - type: mrr_at_1000
            value: 34.1
          - type: mrr_at_3
            value: 30.523
          - type: mrr_at_5
            value: 31.891000000000002
          - type: ndcg_at_1
            value: 24.535
          - type: ndcg_at_10
            value: 34.393
          - type: ndcg_at_100
            value: 40.213
          - type: ndcg_at_1000
            value: 42.748000000000005
          - type: ndcg_at_3
            value: 29.316
          - type: ndcg_at_5
            value: 31.588
          - type: precision_at_1
            value: 24.535
          - type: precision_at_10
            value: 6.483
          - type: precision_at_100
            value: 1.102
          - type: precision_at_1000
            value: 0.151
          - type: precision_at_3
            value: 14.201
          - type: precision_at_5
            value: 10.344000000000001
          - type: recall_at_1
            value: 19.698
          - type: recall_at_10
            value: 46.903
          - type: recall_at_100
            value: 72.624
          - type: recall_at_1000
            value: 90.339
          - type: recall_at_3
            value: 32.482
          - type: recall_at_5
            value: 38.452
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.56
          - type: map_at_10
            value: 41.993
          - type: map_at_100
            value: 43.317
          - type: map_at_1000
            value: 43.399
          - type: map_at_3
            value: 38.415
          - type: map_at_5
            value: 40.472
          - type: mrr_at_1
            value: 36.474000000000004
          - type: mrr_at_10
            value: 46.562
          - type: mrr_at_100
            value: 47.497
          - type: mrr_at_1000
            value: 47.532999999999994
          - type: mrr_at_3
            value: 43.905
          - type: mrr_at_5
            value: 45.379000000000005
          - type: ndcg_at_1
            value: 36.287000000000006
          - type: ndcg_at_10
            value: 48.262
          - type: ndcg_at_100
            value: 53.789
          - type: ndcg_at_1000
            value: 55.44
          - type: ndcg_at_3
            value: 42.358000000000004
          - type: ndcg_at_5
            value: 45.221000000000004
          - type: precision_at_1
            value: 36.287000000000006
          - type: precision_at_10
            value: 8.265
          - type: precision_at_100
            value: 1.24
          - type: precision_at_1000
            value: 0.148
          - type: precision_at_3
            value: 19.558
          - type: precision_at_5
            value: 13.880999999999998
          - type: recall_at_1
            value: 30.56
          - type: recall_at_10
            value: 62.891
          - type: recall_at_100
            value: 85.964
          - type: recall_at_1000
            value: 97.087
          - type: recall_at_3
            value: 46.755
          - type: recall_at_5
            value: 53.986000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.432000000000002
          - type: map_at_10
            value: 40.898
          - type: map_at_100
            value: 42.794
          - type: map_at_1000
            value: 43.029
          - type: map_at_3
            value: 37.658
          - type: map_at_5
            value: 39.519
          - type: mrr_at_1
            value: 36.364000000000004
          - type: mrr_at_10
            value: 46.9
          - type: mrr_at_100
            value: 47.819
          - type: mrr_at_1000
            value: 47.848
          - type: mrr_at_3
            value: 44.202999999999996
          - type: mrr_at_5
            value: 45.715
          - type: ndcg_at_1
            value: 35.573
          - type: ndcg_at_10
            value: 47.628
          - type: ndcg_at_100
            value: 53.88699999999999
          - type: ndcg_at_1000
            value: 55.584
          - type: ndcg_at_3
            value: 42.669000000000004
          - type: ndcg_at_5
            value: 45.036
          - type: precision_at_1
            value: 35.573
          - type: precision_at_10
            value: 8.933
          - type: precision_at_100
            value: 1.8159999999999998
          - type: precision_at_1000
            value: 0.256
          - type: precision_at_3
            value: 20.29
          - type: precision_at_5
            value: 14.387
          - type: recall_at_1
            value: 29.432000000000002
          - type: recall_at_10
            value: 60.388
          - type: recall_at_100
            value: 87.144
          - type: recall_at_1000
            value: 97.154
          - type: recall_at_3
            value: 45.675
          - type: recall_at_5
            value: 52.35300000000001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.462999999999997
          - type: map_at_10
            value: 31.824
          - type: map_at_100
            value: 32.853
          - type: map_at_1000
            value: 32.948
          - type: map_at_3
            value: 28.671999999999997
          - type: map_at_5
            value: 30.579
          - type: mrr_at_1
            value: 23.66
          - type: mrr_at_10
            value: 34.091
          - type: mrr_at_100
            value: 35.077999999999996
          - type: mrr_at_1000
            value: 35.138999999999996
          - type: mrr_at_3
            value: 31.516
          - type: mrr_at_5
            value: 33.078
          - type: ndcg_at_1
            value: 23.845
          - type: ndcg_at_10
            value: 37.594
          - type: ndcg_at_100
            value: 42.74
          - type: ndcg_at_1000
            value: 44.93
          - type: ndcg_at_3
            value: 31.667
          - type: ndcg_at_5
            value: 34.841
          - type: precision_at_1
            value: 23.845
          - type: precision_at_10
            value: 6.229
          - type: precision_at_100
            value: 0.943
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 14.11
          - type: precision_at_5
            value: 10.388
          - type: recall_at_1
            value: 21.462999999999997
          - type: recall_at_10
            value: 52.772
          - type: recall_at_100
            value: 76.794
          - type: recall_at_1000
            value: 92.852
          - type: recall_at_3
            value: 37.049
          - type: recall_at_5
            value: 44.729
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.466
          - type: map_at_10
            value: 25.275
          - type: map_at_100
            value: 27.176000000000002
          - type: map_at_1000
            value: 27.374
          - type: map_at_3
            value: 21.438
          - type: map_at_5
            value: 23.366
          - type: mrr_at_1
            value: 35.699999999999996
          - type: mrr_at_10
            value: 47.238
          - type: mrr_at_100
            value: 47.99
          - type: mrr_at_1000
            value: 48.021
          - type: mrr_at_3
            value: 44.463
          - type: mrr_at_5
            value: 46.039
          - type: ndcg_at_1
            value: 35.244
          - type: ndcg_at_10
            value: 34.559
          - type: ndcg_at_100
            value: 41.74
          - type: ndcg_at_1000
            value: 45.105000000000004
          - type: ndcg_at_3
            value: 29.284
          - type: ndcg_at_5
            value: 30.903999999999996
          - type: precision_at_1
            value: 35.244
          - type: precision_at_10
            value: 10.463000000000001
          - type: precision_at_100
            value: 1.8259999999999998
          - type: precision_at_1000
            value: 0.246
          - type: precision_at_3
            value: 21.65
          - type: precision_at_5
            value: 16.078
          - type: recall_at_1
            value: 15.466
          - type: recall_at_10
            value: 39.782000000000004
          - type: recall_at_100
            value: 64.622
          - type: recall_at_1000
            value: 83.233
          - type: recall_at_3
            value: 26.398
          - type: recall_at_5
            value: 31.676
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.414
          - type: map_at_10
            value: 22.435
          - type: map_at_100
            value: 32.393
          - type: map_at_1000
            value: 34.454
          - type: map_at_3
            value: 15.346000000000002
          - type: map_at_5
            value: 18.282999999999998
          - type: mrr_at_1
            value: 71.5
          - type: mrr_at_10
            value: 78.795
          - type: mrr_at_100
            value: 79.046
          - type: mrr_at_1000
            value: 79.054
          - type: mrr_at_3
            value: 77.333
          - type: mrr_at_5
            value: 78.146
          - type: ndcg_at_1
            value: 60.75000000000001
          - type: ndcg_at_10
            value: 46.829
          - type: ndcg_at_100
            value: 52.370000000000005
          - type: ndcg_at_1000
            value: 59.943999999999996
          - type: ndcg_at_3
            value: 51.33
          - type: ndcg_at_5
            value: 48.814
          - type: precision_at_1
            value: 71.75
          - type: precision_at_10
            value: 37.525
          - type: precision_at_100
            value: 12.075
          - type: precision_at_1000
            value: 2.464
          - type: precision_at_3
            value: 54.75
          - type: precision_at_5
            value: 47.55
          - type: recall_at_1
            value: 9.414
          - type: recall_at_10
            value: 28.67
          - type: recall_at_100
            value: 59.924
          - type: recall_at_1000
            value: 83.921
          - type: recall_at_3
            value: 16.985
          - type: recall_at_5
            value: 21.372
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 52.18000000000001
          - type: f1
            value: 47.04613218997081
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 82.57900000000001
          - type: map_at_10
            value: 88.465
          - type: map_at_100
            value: 88.649
          - type: map_at_1000
            value: 88.661
          - type: map_at_3
            value: 87.709
          - type: map_at_5
            value: 88.191
          - type: mrr_at_1
            value: 88.899
          - type: mrr_at_10
            value: 93.35900000000001
          - type: mrr_at_100
            value: 93.38499999999999
          - type: mrr_at_1000
            value: 93.38499999999999
          - type: mrr_at_3
            value: 93.012
          - type: mrr_at_5
            value: 93.282
          - type: ndcg_at_1
            value: 88.98899999999999
          - type: ndcg_at_10
            value: 91.22
          - type: ndcg_at_100
            value: 91.806
          - type: ndcg_at_1000
            value: 92.013
          - type: ndcg_at_3
            value: 90.236
          - type: ndcg_at_5
            value: 90.798
          - type: precision_at_1
            value: 88.98899999999999
          - type: precision_at_10
            value: 10.537
          - type: precision_at_100
            value: 1.106
          - type: precision_at_1000
            value: 0.11399999999999999
          - type: precision_at_3
            value: 33.598
          - type: precision_at_5
            value: 20.618
          - type: recall_at_1
            value: 82.57900000000001
          - type: recall_at_10
            value: 94.95400000000001
          - type: recall_at_100
            value: 97.14
          - type: recall_at_1000
            value: 98.407
          - type: recall_at_3
            value: 92.203
          - type: recall_at_5
            value: 93.747
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.871000000000002
          - type: map_at_10
            value: 46.131
          - type: map_at_100
            value: 48.245
          - type: map_at_1000
            value: 48.361
          - type: map_at_3
            value: 40.03
          - type: map_at_5
            value: 43.634
          - type: mrr_at_1
            value: 52.932
          - type: mrr_at_10
            value: 61.61299999999999
          - type: mrr_at_100
            value: 62.205
          - type: mrr_at_1000
            value: 62.224999999999994
          - type: mrr_at_3
            value: 59.388
          - type: mrr_at_5
            value: 60.760999999999996
          - type: ndcg_at_1
            value: 53.395
          - type: ndcg_at_10
            value: 54.506
          - type: ndcg_at_100
            value: 61.151999999999994
          - type: ndcg_at_1000
            value: 62.882000000000005
          - type: ndcg_at_3
            value: 49.903999999999996
          - type: ndcg_at_5
            value: 51.599
          - type: precision_at_1
            value: 53.395
          - type: precision_at_10
            value: 15.247
          - type: precision_at_100
            value: 2.221
          - type: precision_at_1000
            value: 0.255
          - type: precision_at_3
            value: 33.539
          - type: precision_at_5
            value: 24.722
          - type: recall_at_1
            value: 27.871000000000002
          - type: recall_at_10
            value: 62.074
          - type: recall_at_100
            value: 86.531
          - type: recall_at_1000
            value: 96.574
          - type: recall_at_3
            value: 45.003
          - type: recall_at_5
            value: 53.00899999999999
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 40.513
          - type: map_at_10
            value: 69.066
          - type: map_at_100
            value: 69.903
          - type: map_at_1000
            value: 69.949
          - type: map_at_3
            value: 65.44200000000001
          - type: map_at_5
            value: 67.784
          - type: mrr_at_1
            value: 80.891
          - type: mrr_at_10
            value: 86.42699999999999
          - type: mrr_at_100
            value: 86.577
          - type: mrr_at_1000
            value: 86.58200000000001
          - type: mrr_at_3
            value: 85.6
          - type: mrr_at_5
            value: 86.114
          - type: ndcg_at_1
            value: 81.026
          - type: ndcg_at_10
            value: 76.412
          - type: ndcg_at_100
            value: 79.16
          - type: ndcg_at_1000
            value: 79.989
          - type: ndcg_at_3
            value: 71.45
          - type: ndcg_at_5
            value: 74.286
          - type: precision_at_1
            value: 81.026
          - type: precision_at_10
            value: 16.198999999999998
          - type: precision_at_100
            value: 1.831
          - type: precision_at_1000
            value: 0.194
          - type: precision_at_3
            value: 46.721000000000004
          - type: precision_at_5
            value: 30.266
          - type: recall_at_1
            value: 40.513
          - type: recall_at_10
            value: 80.99300000000001
          - type: recall_at_100
            value: 91.526
          - type: recall_at_1000
            value: 96.935
          - type: recall_at_3
            value: 70.081
          - type: recall_at_5
            value: 75.665
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 87.42320000000001
          - type: ap
            value: 83.59975323233843
          - type: f1
            value: 87.38669942597816
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 22.676
          - type: map_at_10
            value: 35.865
          - type: map_at_100
            value: 37.019000000000005
          - type: map_at_1000
            value: 37.062
          - type: map_at_3
            value: 31.629
          - type: map_at_5
            value: 34.050999999999995
          - type: mrr_at_1
            value: 23.023
          - type: mrr_at_10
            value: 36.138999999999996
          - type: mrr_at_100
            value: 37.242
          - type: mrr_at_1000
            value: 37.28
          - type: mrr_at_3
            value: 32.053
          - type: mrr_at_5
            value: 34.383
          - type: ndcg_at_1
            value: 23.308999999999997
          - type: ndcg_at_10
            value: 43.254
          - type: ndcg_at_100
            value: 48.763
          - type: ndcg_at_1000
            value: 49.788
          - type: ndcg_at_3
            value: 34.688
          - type: ndcg_at_5
            value: 38.973
          - type: precision_at_1
            value: 23.308999999999997
          - type: precision_at_10
            value: 6.909999999999999
          - type: precision_at_100
            value: 0.967
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 14.818999999999999
          - type: precision_at_5
            value: 11.072
          - type: recall_at_1
            value: 22.676
          - type: recall_at_10
            value: 66.077
          - type: recall_at_100
            value: 91.4
          - type: recall_at_1000
            value: 99.143
          - type: recall_at_3
            value: 42.845
          - type: recall_at_5
            value: 53.08500000000001
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 96.16279069767444
          - type: f1
            value: 96.02183835878418
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 85.74783401732788
          - type: f1
            value: 70.59661579230463
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 79.67047747141895
          - type: f1
            value: 77.06311183471965
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 82.82447881640887
          - type: f1
            value: 82.37598020010746
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 30.266131881264467
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 29.673653452453998
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 32.91846122902102
          - type: mrr
            value: 34.2557300204471
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.762
          - type: map_at_10
            value: 15.134
          - type: map_at_100
            value: 19.341
          - type: map_at_1000
            value: 20.961
          - type: map_at_3
            value: 10.735999999999999
          - type: map_at_5
            value: 12.751999999999999
          - type: mrr_at_1
            value: 52.941
          - type: mrr_at_10
            value: 60.766
          - type: mrr_at_100
            value: 61.196
          - type: mrr_at_1000
            value: 61.227
          - type: mrr_at_3
            value: 58.720000000000006
          - type: mrr_at_5
            value: 59.866
          - type: ndcg_at_1
            value: 50.929
          - type: ndcg_at_10
            value: 39.554
          - type: ndcg_at_100
            value: 36.307
          - type: ndcg_at_1000
            value: 44.743
          - type: ndcg_at_3
            value: 44.157000000000004
          - type: ndcg_at_5
            value: 42.142
          - type: precision_at_1
            value: 52.322
          - type: precision_at_10
            value: 29.412
          - type: precision_at_100
            value: 9.365
          - type: precision_at_1000
            value: 2.2159999999999997
          - type: precision_at_3
            value: 40.557
          - type: precision_at_5
            value: 35.913000000000004
          - type: recall_at_1
            value: 6.762
          - type: recall_at_10
            value: 19.689999999999998
          - type: recall_at_100
            value: 36.687
          - type: recall_at_1000
            value: 67.23
          - type: recall_at_3
            value: 11.773
          - type: recall_at_5
            value: 15.18
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 36.612
          - type: map_at_10
            value: 54.208
          - type: map_at_100
            value: 55.056000000000004
          - type: map_at_1000
            value: 55.069
          - type: map_at_3
            value: 49.45
          - type: map_at_5
            value: 52.556000000000004
          - type: mrr_at_1
            value: 41.976
          - type: mrr_at_10
            value: 56.972
          - type: mrr_at_100
            value: 57.534
          - type: mrr_at_1000
            value: 57.542
          - type: mrr_at_3
            value: 53.312000000000005
          - type: mrr_at_5
            value: 55.672999999999995
          - type: ndcg_at_1
            value: 41.338
          - type: ndcg_at_10
            value: 62.309000000000005
          - type: ndcg_at_100
            value: 65.557
          - type: ndcg_at_1000
            value: 65.809
          - type: ndcg_at_3
            value: 53.74100000000001
          - type: ndcg_at_5
            value: 58.772999999999996
          - type: precision_at_1
            value: 41.338
          - type: precision_at_10
            value: 10.107
          - type: precision_at_100
            value: 1.1900000000000002
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 24.488
          - type: precision_at_5
            value: 17.596
          - type: recall_at_1
            value: 36.612
          - type: recall_at_10
            value: 84.408
          - type: recall_at_100
            value: 97.929
          - type: recall_at_1000
            value: 99.725
          - type: recall_at_3
            value: 62.676
          - type: recall_at_5
            value: 74.24199999999999
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 71.573
          - type: map_at_10
            value: 85.81
          - type: map_at_100
            value: 86.434
          - type: map_at_1000
            value: 86.446
          - type: map_at_3
            value: 82.884
          - type: map_at_5
            value: 84.772
          - type: mrr_at_1
            value: 82.53
          - type: mrr_at_10
            value: 88.51299999999999
          - type: mrr_at_100
            value: 88.59700000000001
          - type: mrr_at_1000
            value: 88.598
          - type: mrr_at_3
            value: 87.595
          - type: mrr_at_5
            value: 88.266
          - type: ndcg_at_1
            value: 82.39999999999999
          - type: ndcg_at_10
            value: 89.337
          - type: ndcg_at_100
            value: 90.436
          - type: ndcg_at_1000
            value: 90.498
          - type: ndcg_at_3
            value: 86.676
          - type: ndcg_at_5
            value: 88.241
          - type: precision_at_1
            value: 82.39999999999999
          - type: precision_at_10
            value: 13.58
          - type: precision_at_100
            value: 1.543
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 38.04
          - type: precision_at_5
            value: 25.044
          - type: recall_at_1
            value: 71.573
          - type: recall_at_10
            value: 96.066
          - type: recall_at_100
            value: 99.73100000000001
          - type: recall_at_1000
            value: 99.991
          - type: recall_at_3
            value: 88.34
          - type: recall_at_5
            value: 92.79899999999999
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 61.767168063971724
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 66.00502775826037
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.718
          - type: map_at_10
            value: 12.13
          - type: map_at_100
            value: 14.269000000000002
          - type: map_at_1000
            value: 14.578
          - type: map_at_3
            value: 8.605
          - type: map_at_5
            value: 10.483
          - type: mrr_at_1
            value: 23.7
          - type: mrr_at_10
            value: 34.354
          - type: mrr_at_100
            value: 35.522
          - type: mrr_at_1000
            value: 35.571999999999996
          - type: mrr_at_3
            value: 31.15
          - type: mrr_at_5
            value: 32.98
          - type: ndcg_at_1
            value: 23.3
          - type: ndcg_at_10
            value: 20.171
          - type: ndcg_at_100
            value: 28.456
          - type: ndcg_at_1000
            value: 33.826
          - type: ndcg_at_3
            value: 19.104
          - type: ndcg_at_5
            value: 16.977999999999998
          - type: precision_at_1
            value: 23.3
          - type: precision_at_10
            value: 10.45
          - type: precision_at_100
            value: 2.239
          - type: precision_at_1000
            value: 0.35300000000000004
          - type: precision_at_3
            value: 17.933
          - type: precision_at_5
            value: 15.1
          - type: recall_at_1
            value: 4.718
          - type: recall_at_10
            value: 21.221999999999998
          - type: recall_at_100
            value: 45.42
          - type: recall_at_1000
            value: 71.642
          - type: recall_at_3
            value: 10.922
          - type: recall_at_5
            value: 15.322
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 85.2065344862739
          - type: cos_sim_spearman
            value: 83.2276569587515
          - type: euclidean_pearson
            value: 83.42726762105312
          - type: euclidean_spearman
            value: 83.31396596997742
          - type: manhattan_pearson
            value: 83.41123401762816
          - type: manhattan_spearman
            value: 83.34393052682026
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 81.28253173719754
          - type: cos_sim_spearman
            value: 76.12995701324436
          - type: euclidean_pearson
            value: 75.30693691794121
          - type: euclidean_spearman
            value: 75.12472789129536
          - type: manhattan_pearson
            value: 75.35860808729171
          - type: manhattan_spearman
            value: 75.30445827952794
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 82.09358031005694
          - type: cos_sim_spearman
            value: 83.18811147636619
          - type: euclidean_pearson
            value: 82.65513459991631
          - type: euclidean_spearman
            value: 82.71085530442987
          - type: manhattan_pearson
            value: 82.67700926821576
          - type: manhattan_spearman
            value: 82.73815539380426
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 81.51365440223137
          - type: cos_sim_spearman
            value: 80.59933905019179
          - type: euclidean_pearson
            value: 80.56660025433806
          - type: euclidean_spearman
            value: 80.27926539084027
          - type: manhattan_pearson
            value: 80.64632724055481
          - type: manhattan_spearman
            value: 80.43616365139444
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 86.8590461417506
          - type: cos_sim_spearman
            value: 87.16337291721602
          - type: euclidean_pearson
            value: 85.8847725068404
          - type: euclidean_spearman
            value: 86.12602873624066
          - type: manhattan_pearson
            value: 86.04095861363909
          - type: manhattan_spearman
            value: 86.35535645007629
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 83.61371557181502
          - type: cos_sim_spearman
            value: 85.16330754442785
          - type: euclidean_pearson
            value: 84.20831431260608
          - type: euclidean_spearman
            value: 84.33191523212125
          - type: manhattan_pearson
            value: 84.34911007642411
          - type: manhattan_spearman
            value: 84.49670164290394
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 90.54452933158781
          - type: cos_sim_spearman
            value: 90.88214621695892
          - type: euclidean_pearson
            value: 91.38488015281216
          - type: euclidean_spearman
            value: 91.01822259603908
          - type: manhattan_pearson
            value: 91.36449776198687
          - type: manhattan_spearman
            value: 90.90478717381717
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 68.00941643037453
          - type: cos_sim_spearman
            value: 67.03588472081898
          - type: euclidean_pearson
            value: 67.35224911601603
          - type: euclidean_spearman
            value: 66.35544831459266
          - type: manhattan_pearson
            value: 67.35080066508304
          - type: manhattan_spearman
            value: 66.07893473733782
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 85.18291011086279
          - type: cos_sim_spearman
            value: 85.66913777481429
          - type: euclidean_pearson
            value: 84.81115930027242
          - type: euclidean_spearman
            value: 85.07133983924173
          - type: manhattan_pearson
            value: 84.88932120524983
          - type: manhattan_spearman
            value: 85.176903109055
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 83.67543572266588
          - type: mrr
            value: 95.9468146232852
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 59.633
          - type: map_at_10
            value: 69.801
          - type: map_at_100
            value: 70.504
          - type: map_at_1000
            value: 70.519
          - type: map_at_3
            value: 67.72500000000001
          - type: map_at_5
            value: 68.812
          - type: mrr_at_1
            value: 62.333000000000006
          - type: mrr_at_10
            value: 70.956
          - type: mrr_at_100
            value: 71.489
          - type: mrr_at_1000
            value: 71.504
          - type: mrr_at_3
            value: 69.44399999999999
          - type: mrr_at_5
            value: 70.244
          - type: ndcg_at_1
            value: 62
          - type: ndcg_at_10
            value: 73.98599999999999
          - type: ndcg_at_100
            value: 76.629
          - type: ndcg_at_1000
            value: 77.054
          - type: ndcg_at_3
            value: 70.513
          - type: ndcg_at_5
            value: 71.978
          - type: precision_at_1
            value: 62
          - type: precision_at_10
            value: 9.633
          - type: precision_at_100
            value: 1.097
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 27.556000000000004
          - type: precision_at_5
            value: 17.666999999999998
          - type: recall_at_1
            value: 59.633
          - type: recall_at_10
            value: 85.52199999999999
          - type: recall_at_100
            value: 96.667
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 75.767
          - type: recall_at_5
            value: 79.76100000000001
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.77821782178218
          - type: cos_sim_ap
            value: 94.58684455008866
          - type: cos_sim_f1
            value: 88.51282051282053
          - type: cos_sim_precision
            value: 90.84210526315789
          - type: cos_sim_recall
            value: 86.3
          - type: dot_accuracy
            value: 99.77623762376237
          - type: dot_ap
            value: 94.86277541733045
          - type: dot_f1
            value: 88.66897575457693
          - type: dot_precision
            value: 87.75710088148874
          - type: dot_recall
            value: 89.60000000000001
          - type: euclidean_accuracy
            value: 99.76732673267327
          - type: euclidean_ap
            value: 94.12114402691984
          - type: euclidean_f1
            value: 87.96804792810784
          - type: euclidean_precision
            value: 87.83649052841476
          - type: euclidean_recall
            value: 88.1
          - type: manhattan_accuracy
            value: 99.77227722772277
          - type: manhattan_ap
            value: 94.33665105240306
          - type: manhattan_f1
            value: 88.25587206396803
          - type: manhattan_precision
            value: 88.21178821178822
          - type: manhattan_recall
            value: 88.3
          - type: max_accuracy
            value: 99.77821782178218
          - type: max_ap
            value: 94.86277541733045
          - type: max_f1
            value: 88.66897575457693
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 72.03943478268592
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 35.285037897356496
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 51.83578447913503
          - type: mrr
            value: 52.69070696460402
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.89437612567638
          - type: cos_sim_spearman
            value: 30.7277819987126
          - type: dot_pearson
            value: 30.999783674122526
          - type: dot_spearman
            value: 30.992168551124905
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.22699999999999998
          - type: map_at_10
            value: 1.8950000000000002
          - type: map_at_100
            value: 11.712
          - type: map_at_1000
            value: 28.713
          - type: map_at_3
            value: 0.65
          - type: map_at_5
            value: 1.011
          - type: mrr_at_1
            value: 92
          - type: mrr_at_10
            value: 95.39999999999999
          - type: mrr_at_100
            value: 95.39999999999999
          - type: mrr_at_1000
            value: 95.39999999999999
          - type: mrr_at_3
            value: 95
          - type: mrr_at_5
            value: 95.39999999999999
          - type: ndcg_at_1
            value: 83
          - type: ndcg_at_10
            value: 76.658
          - type: ndcg_at_100
            value: 60.755
          - type: ndcg_at_1000
            value: 55.05
          - type: ndcg_at_3
            value: 82.961
          - type: ndcg_at_5
            value: 80.008
          - type: precision_at_1
            value: 90
          - type: precision_at_10
            value: 79.80000000000001
          - type: precision_at_100
            value: 62.019999999999996
          - type: precision_at_1000
            value: 24.157999999999998
          - type: precision_at_3
            value: 88
          - type: precision_at_5
            value: 83.6
          - type: recall_at_1
            value: 0.22699999999999998
          - type: recall_at_10
            value: 2.086
          - type: recall_at_100
            value: 15.262
          - type: recall_at_1000
            value: 51.800000000000004
          - type: recall_at_3
            value: 0.679
          - type: recall_at_5
            value: 1.0739999999999998
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.521
          - type: map_at_10
            value: 7.281
          - type: map_at_100
            value: 12.717
          - type: map_at_1000
            value: 14.266000000000002
          - type: map_at_3
            value: 3.62
          - type: map_at_5
            value: 4.7010000000000005
          - type: mrr_at_1
            value: 18.367
          - type: mrr_at_10
            value: 34.906
          - type: mrr_at_100
            value: 36.333
          - type: mrr_at_1000
            value: 36.348
          - type: mrr_at_3
            value: 29.592000000000002
          - type: mrr_at_5
            value: 33.367000000000004
          - type: ndcg_at_1
            value: 19.387999999999998
          - type: ndcg_at_10
            value: 18.523
          - type: ndcg_at_100
            value: 30.932
          - type: ndcg_at_1000
            value: 42.942
          - type: ndcg_at_3
            value: 18.901
          - type: ndcg_at_5
            value: 17.974999999999998
          - type: precision_at_1
            value: 20.408
          - type: precision_at_10
            value: 17.347
          - type: precision_at_100
            value: 6.898
          - type: precision_at_1000
            value: 1.482
          - type: precision_at_3
            value: 21.088
          - type: precision_at_5
            value: 19.184
          - type: recall_at_1
            value: 1.521
          - type: recall_at_10
            value: 13.406
          - type: recall_at_100
            value: 43.418
          - type: recall_at_1000
            value: 80.247
          - type: recall_at_3
            value: 4.673
          - type: recall_at_5
            value: 7.247000000000001
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 71.9084
          - type: ap
            value: 15.388385311898144
          - type: f1
            value: 55.760189174489426
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 62.399547255234864
          - type: f1
            value: 62.61398519525303
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 53.041094760846164
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.92394349406926
          - type: cos_sim_ap
            value: 79.93037248584875
          - type: cos_sim_f1
            value: 73.21063394683026
          - type: cos_sim_precision
            value: 70.99652949925633
          - type: cos_sim_recall
            value: 75.56728232189973
          - type: dot_accuracy
            value: 87.80473266972642
          - type: dot_ap
            value: 79.11055417163318
          - type: dot_f1
            value: 72.79587473273801
          - type: dot_precision
            value: 69.55058880076905
          - type: dot_recall
            value: 76.35883905013192
          - type: euclidean_accuracy
            value: 87.91202241163496
          - type: euclidean_ap
            value: 79.61955502404068
          - type: euclidean_f1
            value: 72.65956080647231
          - type: euclidean_precision
            value: 70.778083562672
          - type: euclidean_recall
            value: 74.64379947229551
          - type: manhattan_accuracy
            value: 87.7749299636407
          - type: manhattan_ap
            value: 79.33286131650932
          - type: manhattan_f1
            value: 72.44748412310699
          - type: manhattan_precision
            value: 67.43974533879036
          - type: manhattan_recall
            value: 78.25857519788919
          - type: max_accuracy
            value: 87.92394349406926
          - type: max_ap
            value: 79.93037248584875
          - type: max_f1
            value: 73.21063394683026
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.89987192921178
          - type: cos_sim_ap
            value: 87.49525152555509
          - type: cos_sim_f1
            value: 80.05039276715578
          - type: cos_sim_precision
            value: 77.15714285714286
          - type: cos_sim_recall
            value: 83.1690791499846
          - type: dot_accuracy
            value: 89.58163542515621
          - type: dot_ap
            value: 86.87353801172357
          - type: dot_f1
            value: 79.50204384986993
          - type: dot_precision
            value: 76.83522482401953
          - type: dot_recall
            value: 82.36064059131506
          - type: euclidean_accuracy
            value: 89.81255093724532
          - type: euclidean_ap
            value: 87.41058010369022
          - type: euclidean_f1
            value: 79.94095829233214
          - type: euclidean_precision
            value: 78.61396456751525
          - type: euclidean_recall
            value: 81.3135201724669
          - type: manhattan_accuracy
            value: 89.84553886754377
          - type: manhattan_ap
            value: 87.41173628281432
          - type: manhattan_f1
            value: 79.9051922079846
          - type: manhattan_precision
            value: 76.98016269444841
          - type: manhattan_recall
            value: 83.06128734216199
          - type: max_accuracy
            value: 89.89987192921178
          - type: max_ap
            value: 87.49525152555509
          - type: max_f1
            value: 80.05039276715578

Repetition Improves Language Model Embeddings

Please refer to our paper: https://arxiv.org/abs/2402.15449

And our GitHub: https://github.com/jakespringer/echo-embeddings

We provide a description of the model as well as example usage in the above links.