metadata
library_name: transformers
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-biobert
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: biobert_json
type: biobert_json
config: Biobert_json
split: validation
args: Biobert_json
metrics:
- name: Precision
type: precision
value: 0.9479839607930497
- name: Recall
type: recall
value: 0.9641461342395922
- name: F1
type: f1
value: 0.95599674257954
- name: Accuracy
type: accuracy
value: 0.9768617183218656
bert-biobert
This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-uncased on the biobert_json dataset. It achieves the following results on the evaluation set:
- Loss: 0.1154
- Precision: 0.9480
- Recall: 0.9641
- F1: 0.9560
- Accuracy: 0.9769
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.364 | 1.0 | 612 | 0.1155 | 0.9302 | 0.9525 | 0.9412 | 0.9686 |
0.117 | 2.0 | 1224 | 0.1034 | 0.9405 | 0.9640 | 0.9521 | 0.9749 |
0.0837 | 3.0 | 1836 | 0.0980 | 0.9469 | 0.9682 | 0.9574 | 0.9772 |
0.066 | 4.0 | 2448 | 0.0975 | 0.9474 | 0.9678 | 0.9575 | 0.9775 |
0.0451 | 5.0 | 3060 | 0.0982 | 0.9498 | 0.9648 | 0.9572 | 0.9770 |
0.0405 | 6.0 | 3672 | 0.1074 | 0.9469 | 0.9643 | 0.9555 | 0.9761 |
0.0318 | 7.0 | 4284 | 0.1104 | 0.9478 | 0.9663 | 0.9570 | 0.9771 |
0.031 | 8.0 | 4896 | 0.1145 | 0.9495 | 0.9654 | 0.9574 | 0.9772 |
0.0235 | 9.0 | 5508 | 0.1137 | 0.9495 | 0.9639 | 0.9566 | 0.9767 |
0.0209 | 10.0 | 6120 | 0.1154 | 0.9480 | 0.9641 | 0.9560 | 0.9769 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3