|
--- |
|
library_name: transformers |
|
base_model: FacebookAI/xlm-roberta-large-finetuned-conll03-english |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- biobert_json |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-large-finetuned-conll03-english-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: biobert_json |
|
type: biobert_json |
|
config: Biobert_json |
|
split: validation |
|
args: Biobert_json |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.947671764437343 |
|
- name: Recall |
|
type: recall |
|
value: 0.9724776014522457 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9599144533394989 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9809696788972173 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-large-finetuned-conll03-english-finetuned-ner |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) on the biobert_json dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0876 |
|
- Precision: 0.9477 |
|
- Recall: 0.9725 |
|
- F1: 0.9599 |
|
- Accuracy: 0.9810 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.255 | 1.0 | 612 | 0.0956 | 0.9305 | 0.9638 | 0.9468 | 0.9749 | |
|
| 0.0997 | 2.0 | 1224 | 0.0871 | 0.9397 | 0.9740 | 0.9565 | 0.9795 | |
|
| 0.0711 | 3.0 | 1836 | 0.0848 | 0.9474 | 0.9718 | 0.9595 | 0.9806 | |
|
| 0.0552 | 4.0 | 2448 | 0.0860 | 0.9464 | 0.9744 | 0.9602 | 0.9808 | |
|
| 0.0354 | 5.0 | 3060 | 0.0876 | 0.9477 | 0.9725 | 0.9599 | 0.9810 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|