Edit model card

BioNLP13CG_SciBERT_NER

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1817

  • Seqeval classification report: precision recall f1-score support

                   Amino_acid       0.54      0.43      0.48        89
            Anatomical_system       0.00      0.00      0.00        41
                       Cancer       0.84      0.84      0.84      3620
                         Cell       0.00      0.00      0.00        11
           Cellular_component       0.00      0.00      0.00         7
    

Developing_anatomical_structure 0.00 0.00 0.00 37 Gene_or_gene_product 0.90 0.92 0.91 540 Immaterial_anatomical_entity 0.63 0.65 0.64 82 Multi-tissue_structure 0.63 0.71 0.67 144 Organ 0.00 0.00 0.00 56 Organism 0.86 0.17 0.28 36 Organism_subdivision 0.83 0.86 0.84 1086 Organism_substance 0.87 0.81 0.84 484 Pathological_formation 0.92 0.92 0.92 1430 Simple_chemical 0.58 0.72 0.64 304 Tissue 0.79 0.82 0.80 341

                  micro avg       0.84      0.82      0.83      8308
                  macro avg       0.52      0.49      0.49      8308
               weighted avg       0.82      0.82      0.82      8308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Seqeval classification report
No log 0.99 95 0.2278 precision recall f1-score support
                 Amino_acid       0.48      0.15      0.22        89
          Anatomical_system       0.00      0.00      0.00        41
                     Cancer       0.81      0.80      0.80      3620
                       Cell       0.00      0.00      0.00        11
         Cellular_component       0.00      0.00      0.00         7

Developing_anatomical_structure 0.00 0.00 0.00 37 Gene_or_gene_product 0.80 0.90 0.84 540 Immaterial_anatomical_entity 0.48 0.59 0.52 82 Multi-tissue_structure 0.62 0.45 0.52 144 Organ 0.00 0.00 0.00 56 Organism 0.00 0.00 0.00 36 Organism_subdivision 0.75 0.84 0.79 1086 Organism_substance 0.83 0.77 0.80 484 Pathological_formation 0.90 0.86 0.88 1430 Simple_chemical 0.53 0.69 0.60 304 Tissue 0.74 0.73 0.73 341

                  micro avg       0.79      0.78      0.78      8308
                  macro avg       0.43      0.42      0.42      8308
               weighted avg       0.77      0.78      0.77      8308

| | No log | 2.0 | 191 | 0.1850 | precision recall f1-score support

                 Amino_acid       0.52      0.40      0.46        89
          Anatomical_system       0.00      0.00      0.00        41
                     Cancer       0.83      0.84      0.84      3620
                       Cell       0.00      0.00      0.00        11
         Cellular_component       0.00      0.00      0.00         7

Developing_anatomical_structure 0.00 0.00 0.00 37 Gene_or_gene_product 0.89 0.92 0.90 540 Immaterial_anatomical_entity 0.56 0.65 0.60 82 Multi-tissue_structure 0.60 0.69 0.64 144 Organ 0.00 0.00 0.00 56 Organism 1.00 0.17 0.29 36 Organism_subdivision 0.80 0.87 0.83 1086 Organism_substance 0.87 0.79 0.83 484 Pathological_formation 0.91 0.93 0.92 1430 Simple_chemical 0.57 0.72 0.64 304 Tissue 0.77 0.79 0.78 341

                  micro avg       0.82      0.83      0.82      8308
                  macro avg       0.52      0.49      0.48      8308
               weighted avg       0.81      0.83      0.82      8308

| | No log | 2.98 | 285 | 0.1817 | precision recall f1-score support

                 Amino_acid       0.54      0.43      0.48        89
          Anatomical_system       0.00      0.00      0.00        41
                     Cancer       0.84      0.84      0.84      3620
                       Cell       0.00      0.00      0.00        11
         Cellular_component       0.00      0.00      0.00         7

Developing_anatomical_structure 0.00 0.00 0.00 37 Gene_or_gene_product 0.90 0.92 0.91 540 Immaterial_anatomical_entity 0.63 0.65 0.64 82 Multi-tissue_structure 0.63 0.71 0.67 144 Organ 0.00 0.00 0.00 56 Organism 0.86 0.17 0.28 36 Organism_subdivision 0.83 0.86 0.84 1086 Organism_substance 0.87 0.81 0.84 484 Pathological_formation 0.92 0.92 0.92 1430 Simple_chemical 0.58 0.72 0.64 304 Tissue 0.79 0.82 0.80 341

                  micro avg       0.84      0.82      0.83      8308
                  macro avg       0.52      0.49      0.49      8308
               weighted avg       0.82      0.82      0.82      8308

|

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for judithrosell/BioNLP13CG_SciBERT_NER

Finetuned
(51)
this model