Julien Simon
update model card README.md
505499a
|
raw
history blame
2.15 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilbert-amazon-shoe-reviews-tensorboard
    results: []

distilbert-amazon-shoe-reviews-tensorboard

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9534
  • Accuracy: 0.5779
  • F1: [0.63189419 0.46645049 0.50381304 0.55843496 0.73060507]
  • Precision: [0.62953754 0.47008547 0.48669202 0.58801498 0.71780957]
  • Recall: [0.63426854 0.46287129 0.52218256 0.53168844 0.74386503]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.8776 1.0 2813 0.9534 0.5779 [0.63189419 0.46645049 0.50381304 0.55843496 0.73060507] [0.62953754 0.47008547 0.48669202 0.58801498 0.71780957] [0.63426854 0.46287129 0.52218256 0.53168844 0.74386503]

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu102
  • Datasets 2.3.2
  • Tokenizers 0.12.1