Whisper-squeezeformer-cross-whisper

This model is a fine-tuned version of openai/whisper-small on the LibriSpeech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1914
  • Wer: 9.9874

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 20
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2500
  • training_steps: 52500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.6622 1.0 2500 3.9000 116.9678
3.9849 2.0 5000 3.7525 129.2358
3.4683 3.0 7500 1.3437 77.1169
0.5254 4.0 10000 0.4425 24.7470
0.2291 5.0 12500 0.3604 19.0867
0.143 6.0 15000 0.3413 17.6544
0.0969 7.0 17500 0.3331 16.7510
0.071 8.0 20000 0.3366 16.8214
0.2792 9.0 22500 0.2637 13.9588
0.1737 10.0 25000 0.2469 13.0078
0.1174 11.0 27500 0.2442 11.9560
0.0809 12.0 30000 0.2454 12.0549
0.3352 13.0 32500 0.2290 11.8533
0.249 14.0 35000 0.2225 11.5110
0.205 15.0 37500 0.2216 11.4805
0.1802 16.0 40000 0.2225 11.3360
0.2927 17.0 42500 0.2053 10.2975
0.2318 18.0 45000 0.1998 10.2994
0.2327 19.0 47500 0.1936 10.0369
0.2039 20.0 50000 0.1917 9.9646
0.1952 21.0 52500 0.1914 9.9874

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0
Downloads last month
64
Safetensors
Model size
282M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jun-han/Whisper-squeezeformer-v2

Finetuned
(2292)
this model