vit-base-tour-augmentation-v5

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the beans dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4590
  • Acc: {'accuracy': 0.42896389324960754}
  • F1: {'f1': 0.4271599947085357}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Acc F1
1.634 0.77 1000 2.4590 {'accuracy': 0.42896389324960754} {'f1': 0.4271599947085357}
0.8261 1.53 2000 2.4812 {'accuracy': 0.4703689167974882} {'f1': 0.4487847422578378}
0.3823 2.3 3000 2.6315 {'accuracy': 0.46683673469387754} {'f1': 0.45668802662482005}
0.1652 3.07 4000 2.8592 {'accuracy': 0.46703296703296704} {'f1': 0.4525782242029193}
0.0713 3.83 5000 3.0906 {'accuracy': 0.4430926216640502} {'f1': 0.45342569349779865}
0.0354 4.6 6000 3.2511 {'accuracy': 0.45506279434850866} {'f1': 0.44957410984221347}
0.0214 5.36 7000 3.3369 {'accuracy': 0.47370486656200944} {'f1': 0.4603765751991713}
0.0129 6.13 8000 3.4611 {'accuracy': 0.4619309262166405} {'f1': 0.4624748087985776}
0.0079 6.9 9000 3.5376 {'accuracy': 0.46251962323390894} {'f1': 0.4584329789658534}
0.0058 7.66 10000 3.5842 {'accuracy': 0.4705651491365777} {'f1': 0.46144792853832145}

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.2
  • Tokenizers 0.12.1
Downloads last month
210
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.