このモデルについて
このモデルは、ベースモデルである"llm-jp/llm-jp-3-13b"を下記のデータセットでインストラクションチューニングを行いました。
https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)
また、学習にはUnslothとHuggingfaceのTRL libraryを使用しています。
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
ライセンス・利用範囲
- 上記のベースモデルおよびデータセットは CC BY-NC-SA でライセンスされており、本モデルも同じライセンスを継承します。
- 本モデルの商用利用はできません。研究・学習用途のみでご使用ください。
使用方法
以下はGoogle Colabで実行する事を想定したコードです。
事前に、Hugging Faceのトークンを取得し、
GoogleColab画面左の鍵アイコンから、シークレットキーを"HF_TOKEN"という名前で設定してください。
また、ファイルアイコンから、タスクとなるデータ"elyza-tasks-100-TV_0.jsonl"をドラッグ&ドロップでアップロードしてください。
実行すると{adapter_id}-outputs.jsonlのファイル名で、タスクに回答を添えた結果が出力されます。
# 必要なライブラリをインストール
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install -U torch
!pip install -U peft
# 必要なライブラリを読み込み
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re
# ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "junyamokubo/llm-jp-3-13b-12JM_01_lora"
# Hugging Face Token を取得
from google.colab import userdata
HF_TOKEN=userdata.get('HF_TOKEN')
# unslothのFastLanguageModelで元のモデルをロード
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は13Bモデルを扱うためTrue
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
# 元のモデルにLoRAのアダプタを統合
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
# タスクとなるデータの読み込み
# 事前にデータをアップロードしてください
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# モデルを用いてタスクの推論
# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input} 簡潔に回答してください \n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
# 結果をjsonlで保存
json_file_id = re.sub(".*/", "",adapter_id)
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
Model tree for junyamokubo/llm-jp-3-13b-12JM_01_lora
Base model
llm-jp/llm-jp-3-13b