Trained for 4 epochs.

Usage:

image_processor = AutoImageProcessor.from_pretrained("microsoft/dit-large")
model = BeitForSemanticSegmentation.from_pretrained("jzju/dit-doclaynet")
image = Image.open('img.png').convert('RGB')
inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# logits are of shape (batch_size, num_labels, height, width)
logits = outputs.logits
out = logits[0].detach()
out.size()
for i in range(11):
    plt.imshow(out[i])
    plt.show()

Labels:

1: Caption
2: Footnote
3: Formula
4: List-item
5: Page-footer
6: Page-header
7: Picture
8: Section-header
9: Table
10: Text
11: Title

Data label convert:

model = BeitForSemanticSegmentation.from_pretrained("microsoft/dit-base", num_labels=11)
ds = load_dataset("ds4sd/DocLayNet-v1.1")
mask = np.zeros([11, 1025, 1025])
for b, c in zip(d["bboxes"], d["category_id"]):
    b = [np.clip(int(bb), 0, 1025) for bb in b]
    mask[c - 1][b[1]:b[1]+b[3], b[0]:b[0]+b[2]] = 1
mask = [cv2.resize(a, dsize=(56, 56), interpolation=cv2.INTER_AREA) for a in mask]
d["label"] = np.stack(mask)
Downloads last month
4,697
Safetensors
Model size
163M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train jzju/dit-doclaynet