jzju/sbert-sv-lim2
This model Is trained from KBLab/bert-base-swedish-cased-new with data from sbx/superlim-2
This is a sentence-transformers model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('jzju/sbert-sv-lim2')
embeddings = model.encode(sentences)
print(embeddings)
Training Code
from datasets import load_dataset, concatenate_datasets
from sentence_transformers import (
SentenceTransformer,
InputExample,
losses,
models,
util,
datasets,
)
from torch.utils.data import DataLoader
from torch import nn
import random
word_embedding_model = models.Transformer(
"KBLab/bert-base-swedish-cased-new", max_seq_length=256
)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
dense_model = models.Dense(
in_features=pooling_model.get_sentence_embedding_dimension(),
out_features=256,
activation_function=nn.Tanh(),
)
model = SentenceTransformer(modules=[word_embedding_model, pooling_model, dense_model])
def pair():
def norm(x):
x["label"] = x["label"] / m
return x
dd = []
for sub in ["swepar", "swesim_relatedness", "swesim_similarity"]:
ds = concatenate_datasets(
[d for d in load_dataset("sbx/superlim-2", sub).values()]
)
if "sentence_1" in ds.features:
ds = ds.rename_column("sentence_1", "d1")
ds = ds.rename_column("sentence_2", "d2")
else:
ds = ds.rename_column("word_1", "d1")
ds = ds.rename_column("word_2", "d2")
m = max([d["label"] for d in ds])
dd.append(ds.map(norm))
ds = concatenate_datasets(dd)
train_examples = []
for d in ds:
train_examples.append(InputExample(texts=[d["d1"], d["d2"]], label=d["label"]))
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=64)
train_loss = losses.CosineSimilarityLoss(model)
model.fit(
train_objectives=[(train_dataloader, train_loss)], epochs=10, warmup_steps=100
)
def nli():
ds = concatenate_datasets(
[d for d in load_dataset("sbx/superlim-2", "swenli").values()]
)
def add_to_samples(sent1, sent2, label):
if sent1 not in train_data:
train_data[sent1] = {0: set(), 1: set(), 2: set()}
train_data[sent1][label].add(sent2)
train_data = {}
for d in ds:
add_to_samples(d["premise"], d["hypothesis"], d["label"])
add_to_samples(d["hypothesis"], d["premise"], d["label"])
train_samples = []
for sent1, others in train_data.items():
if len(others[0]) > 0 and len(others[1]) > 0:
train_samples.append(
InputExample(
texts=[
sent1,
random.choice(list(others[0])),
random.choice(list(others[1])),
]
)
)
train_samples.append(
InputExample(
texts=[
random.choice(list(others[0])),
sent1,
random.choice(list(others[1])),
]
)
)
train_dataloader = datasets.NoDuplicatesDataLoader(train_samples, batch_size=64)
train_loss = losses.MultipleNegativesRankingLoss(model)
model.fit(
train_objectives=[(train_dataloader, train_loss)], epochs=1, warmup_steps=100
)
pair()
nli()
model.save()
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.