File size: 3,524 Bytes
5040fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
tags:
- generated_from_trainer
datasets:
- esnli
metrics:
- f1
- accuracy
model-index:
- name: textattack-roberta-base-MNLI-e-snli-classification-nli-base
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: esnli
      type: esnli
      config: plain_text
      split: validation
      args: plain_text
    metrics:
    - name: F1
      type: f1
      value: 0.9106202958294739
    - name: Accuracy
      type: accuracy
      value: 0.9110953058321479
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# textattack-roberta-base-MNLI-e-snli-classification-nli-base

This model is a fine-tuned version of [textattack/roberta-base-MNLI](https://huggingface.co/textattack/roberta-base-MNLI) on the esnli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2488
- F1: 0.9106
- Accuracy: 0.9111

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 1.5376        | 0.05  | 400  | 0.4010          | 0.8556 | 0.8556   |
| 0.4352        | 0.09  | 800  | 0.3349          | 0.8795 | 0.8800   |
| 0.4           | 0.14  | 1200 | 0.3180          | 0.8851 | 0.8854   |
| 0.3801        | 0.19  | 1600 | 0.2975          | 0.8918 | 0.8921   |
| 0.3599        | 0.23  | 2000 | 0.2949          | 0.8951 | 0.8955   |
| 0.3612        | 0.28  | 2400 | 0.2802          | 0.8987 | 0.8987   |
| 0.3519        | 0.33  | 2800 | 0.2763          | 0.8977 | 0.8980   |
| 0.349         | 0.37  | 3200 | 0.2766          | 0.9020 | 0.9023   |
| 0.3432        | 0.42  | 3600 | 0.2748          | 0.9000 | 0.9001   |
| 0.3435        | 0.47  | 4000 | 0.2702          | 0.9051 | 0.9051   |
| 0.3352        | 0.51  | 4400 | 0.2728          | 0.9034 | 0.9039   |
| 0.3277        | 0.56  | 4800 | 0.2634          | 0.9039 | 0.9043   |
| 0.3307        | 0.61  | 5200 | 0.2623          | 0.9050 | 0.9057   |
| 0.3247        | 0.65  | 5600 | 0.2685          | 0.9059 | 0.9063   |
| 0.3175        | 0.7   | 6000 | 0.2589          | 0.9081 | 0.9084   |
| 0.3144        | 0.75  | 6400 | 0.2586          | 0.9088 | 0.9093   |
| 0.3102        | 0.79  | 6800 | 0.2547          | 0.9088 | 0.9090   |
| 0.3223        | 0.84  | 7200 | 0.2526          | 0.9093 | 0.9096   |
| 0.3166        | 0.89  | 7600 | 0.2490          | 0.9115 | 0.9118   |
| 0.3124        | 0.93  | 8000 | 0.2503          | 0.9106 | 0.9107   |
| 0.3053        | 0.98  | 8400 | 0.2452          | 0.9099 | 0.9101   |
| 0.2908        | 1.03  | 8800 | 0.2575          | 0.9113 | 0.9119   |
| 0.2853        | 1.07  | 9200 | 0.2464          | 0.9114 | 0.9118   |
| 0.2796        | 1.12  | 9600 | 0.2488          | 0.9106 | 0.9111   |


### Framework versions

- Transformers 4.27.1
- Pytorch 1.12.1+cu113
- Datasets 2.10.1
- Tokenizers 0.13.2