Torchreid-Pip: Packaged version of Torchreid

teaser

This repo is a packaged version of the Torchreid algorithm.

Installation

pip install torchreid

Model Description

Learning Generalisable Omni-Scale Representations for Person Re-Identification: Omni-Scale Feature Learning for Person Re-Identification Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch

Overview

1. Import torchreid
import torchreid
2. Load data manager
datamanager = torchreid.data.ImageDataManager(
    root="reid-data",
    sources="market1501",
    targets="market1501",
    height=256,
    width=128,
    batch_size_train=32,
    batch_size_test=100,
    transforms=["random_flip", "random_crop"]
)
3 Build model, optimizer and lr_scheduler
model = torchreid.models.build_model(
    name="resnet50",
    num_classes=datamanager.num_train_pids,
    loss="softmax",
    pretrained=True
)

model = model.cuda()

optimizer = torchreid.optim.build_optimizer(
    model,
    optim="adam",
    lr=0.0003
)

scheduler = torchreid.optim.build_lr_scheduler(
    optimizer,
    lr_scheduler="single_step",
    stepsize=20
)
4. Build engine
engine = torchreid.engine.ImageSoftmaxEngine(
    datamanager,
    model,
    optimizer=optimizer,
    scheduler=scheduler,
    label_smooth=True
)
5. Run training and test
engine.run(
    save_dir="log/resnet50",
    max_epoch=60,
    eval_freq=10,
    print_freq=10,
    test_only=False
)

Citation

If you use this code or the models in your research, please give credit to the following papers:

@article{torchreid,
    title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch},
    author={Zhou, Kaiyang and Xiang, Tao},
    journal={arXiv preprint arXiv:1910.10093},
    year={2019}
} 

@inproceedings{zhou2019osnet,
    title={Omni-Scale Feature Learning for Person Re-Identification},
    author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
    booktitle={ICCV},
    year={2019}
}

@article{zhou2021osnet,
    title={Learning Generalisable Omni-Scale Representations for Person Re-Identification},
    author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
    journal={TPAMI},
    year={2021}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Space using kadirnar/osnet_x1_0_imagenet 1