output / README.md
kalash-1106's picture
End of training
854340e verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: output
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.3191881918819188

output

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5336
  • Wer Ortho: 0.3166
  • Wer: 0.3192

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 15
  • training_steps: 90
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
2.9987 0.5172 15 1.7184 0.4640 0.4170
0.7514 1.0345 30 0.5257 0.3790 0.3795
0.307 1.5517 45 0.5051 0.3269 0.3253
0.3075 2.0690 60 0.4907 0.3526 0.3518
0.1492 2.5862 75 0.5120 0.3095 0.3106
0.0719 3.1034 90 0.5336 0.3166 0.3192

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1