metadata
language:
- en
library_name: flair
pipeline_tag: token-classification
English NER model for extraction of named entities from scientific acknowledgement texts using Flair Embeddings
F1-Score: 0.79
Predicts 6 tags:
label | description | precision | recall | f1-score | support |
---|---|---|---|---|---|
GRNB | grant number | 0,93 | 0,98 | 0,96 | 160 |
IND | person | 0,98 | 0,98 | 0,98 | 295 |
FUND | funding organization | 0,70 | 0,83 | 0,76 | 157 |
UNI | university | 0,77 | 0,74 | 0,75 | 99 |
MISC | miscellaneous | 0,65 | 0,65 | 0,65 | 82 |
COR | corporation | 0,75 | 0,50 | 0,60 | 12 |
Based on Flair embeddings
Usage
Requires: Flair (pip install flair)
#import libraries
from flair.data import Sentence
from flair.models import SequenceTagger
# load the trained model
model = SequenceTagger.load("kalawinka/flair-ner-acknowledgments")
# create example sentence
sentence = Sentence("This work was supported by State Key Lab of Ocean Engineering Shanghai Jiao Tong University and financially supported by China National Scientific and Technology Major Project (Grant No. 2016ZX05028-006-009)")
# predict the tags
model.predict(sentence)
#print output as spans
for entity in sentence.get_spans('ner'):
print(entity)
This produces the following output:
Citation
if you use this model, please consider citing this work:
@misc{smirnova2023embedding,
title={Embedding Models for Supervised Automatic Extraction and Classification of Named Entities in Scientific Acknowledgements},
author={Nina Smirnova and Philipp Mayr},
year={2023},
eprint={2307.13377},
archivePrefix={arXiv},
primaryClass={cs.DL}
}