See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: kareemamrr/databricks-dolly-15k-alpaca
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: llama-3-8b-dolly-axolotl
wandb_entity: kamr54
hub_model_id: kareemamrr/llama-3-8b_dolly_lora
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
llama-3-8b_dolly_lora
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5906
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6347 | 0.0114 | 1 | 1.6104 |
1.5831 | 0.2507 | 22 | 1.5513 |
1.6087 | 0.5014 | 44 | 1.5421 |
1.3508 | 0.7521 | 66 | 1.5383 |
1.4055 | 1.0028 | 88 | 1.5344 |
1.45 | 1.2279 | 110 | 1.5376 |
1.3131 | 1.4786 | 132 | 1.5385 |
1.1921 | 1.7293 | 154 | 1.5384 |
1.4415 | 1.9801 | 176 | 1.5387 |
1.3818 | 2.2051 | 198 | 1.5586 |
1.3292 | 2.4558 | 220 | 1.5662 |
1.4667 | 2.7066 | 242 | 1.5664 |
1.3002 | 2.9573 | 264 | 1.5660 |
1.3682 | 3.1852 | 286 | 1.5878 |
1.2825 | 3.4359 | 308 | 1.5901 |
1.3347 | 3.6866 | 330 | 1.5906 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 8
Model tree for kamrr/llama-3-8b_dolly_lora
Base model
meta-llama/Meta-Llama-3-8B