See axolotl config
axolotl version: 0.4.0
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: kareemamrr/databricks-dolly-4.5k
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 16
lora_dropout: 0.5
lora_target_linear: true
lora_fan_in_fan_out:
# wandb_project: tinyllama-dolly-axolotl
# wandb_entity: kamr54
hub_model_id: kareemamrr/tinyllama-1.1B_dolly-4.5k_lora
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler:
learning_rate: 0.0004
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
tinyllama-1.1B_dolly-4.5k_lora
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7650
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8146 | 0.0317 | 1 | 2.1074 |
1.7728 | 0.2540 | 8 | 1.8290 |
1.9975 | 0.5079 | 16 | 1.7875 |
1.7685 | 0.7619 | 24 | 1.7717 |
1.8368 | 1.0159 | 32 | 1.7684 |
1.768 | 1.2460 | 40 | 1.7622 |
1.7774 | 1.5 | 48 | 1.7655 |
1.7727 | 1.7540 | 56 | 1.7565 |
1.7453 | 2.0079 | 64 | 1.7502 |
1.5904 | 2.2381 | 72 | 1.7644 |
1.5978 | 2.4921 | 80 | 1.7628 |
1.7305 | 2.7460 | 88 | 1.7600 |
1.4956 | 3.0 | 96 | 1.7582 |
1.503 | 3.2222 | 104 | 1.7603 |
1.6659 | 3.4762 | 112 | 1.7634 |
1.734 | 3.7302 | 120 | 1.7650 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4