kanishka's picture
End of training
1f38687 verified
metadata
tags:
  - generated_from_trainer
datasets:
  - kanishka/counterfactual_babylm_aann_high_variability_noun
metrics:
  - accuracy
model-index:
  - name: >-
      smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_noun-seed_1024-1e-3
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: kanishka/counterfactual_babylm_aann_high_variability_noun
          type: kanishka/counterfactual_babylm_aann_high_variability_noun
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.41050110032238096

smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_noun-seed_1024-1e-3

This model was trained from scratch on the kanishka/counterfactual_babylm_aann_high_variability_noun dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4042
  • Accuracy: 0.4105

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.5971 1.0 18594 3.7361 0.3618
3.3831 2.0 37188 3.5640 0.3810
3.2562 3.0 55782 3.4518 0.3928
3.1823 4.0 74376 3.4151 0.3979
3.123 5.0 92970 3.3895 0.4020
3.0779 6.0 111564 3.3728 0.4045
3.0394 7.0 130158 3.3513 0.4068
3.0098 8.0 148752 3.3329 0.4091
2.9848 9.0 167346 3.3543 0.4096
2.9607 10.0 185940 3.3317 0.4102
2.9381 11.0 204534 3.3509 0.4096
2.9132 12.0 223128 3.3383 0.4106
2.8884 13.0 241722 3.3772 0.4105
2.8698 14.0 260316 3.3457 0.4117
2.8512 15.0 278910 3.3592 0.4110
2.828 16.0 297504 3.3782 0.4106
2.813 17.0 316098 3.3778 0.4109
2.7978 18.0 334692 3.3931 0.4105
2.7756 19.0 353286 3.3947 0.4107
2.7571 20.0 371880 3.4042 0.4105

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.19.1