Intended uses & limitations
How to use
You can use this model with spacy.
!pip install https://huggingface.co/karthid/ta_Tamil_NER/resolve/main/ta_Tamil_NER-any-py3-none-any.whl
import ta_Tamil_NER
from spacy import displacy
nlp = ta_Tamil_NER.load()
doc = nlp("கூகுள் நிறுவனம் தனது முக்கிய வசதியான ஸ்ட்ரீட் வியூ வசதியை 10 நகரங்களில் இந்தியாவில் அறிமுகப்படுத்தி உள்ளது.")
displacy.render(doc,jupyter=True, style = "ent")
Feature | Description |
---|---|
Name | ta_Tamil_NER |
Version | 0.0.0 |
spaCy | >=3.2.4,<3.3.0 |
Default Pipeline | transformer , ner |
Components | transformer , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | Karthi Dhayalan |
Label Scheme
View label scheme
Component | Labels |
---|---|
ner |
B-PER , I-PER , B-ORG , I-ORG , B-LOC , I-LOC |
Accuracy
Type | Score |
---|---|
ENTS_F |
84.92 |
ENTS_P |
84.34 |
ENTS_R |
85.52 |
TRANSFORMER_LOSS |
1842600.06 |
NER_LOSS |
108788.05 |
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- NER Precisionself-reported0.843
- NER Recallself-reported0.855
- NER F Scoreself-reported0.849