Edit model card

LiLT-SER-JA

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3482
  • Precision: 0.7244
  • Recall: 0.8755
  • F1: 0.7928
  • Accuracy: 0.7835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0726 10.2 500 1.0347 0.6824 0.8359 0.7514 0.7829
0.0015 20.41 1000 1.6415 0.6828 0.8808 0.7692 0.7700
0.0062 30.61 1500 1.7000 0.7063 0.8427 0.7685 0.7828
0.0145 40.82 2000 1.9098 0.6979 0.8885 0.7817 0.7729
0.0014 51.02 2500 1.6868 0.7117 0.8509 0.7751 0.7859
0.0009 61.22 3000 1.8930 0.7087 0.8441 0.7705 0.7782
0.0001 71.43 3500 2.0325 0.7217 0.8736 0.7904 0.7845
0.0006 81.63 4000 1.8854 0.7032 0.8769 0.7805 0.7904
0.0001 91.84 4500 2.2205 0.6977 0.8721 0.7752 0.7577
0.0002 102.04 5000 2.1731 0.7090 0.8702 0.7814 0.7786
0.0 112.24 5500 2.3198 0.7150 0.8707 0.7852 0.7681
0.0003 122.45 6000 1.9680 0.7188 0.8649 0.7851 0.7896
0.0 132.65 6500 2.2202 0.7316 0.8523 0.7873 0.7815
0.0 142.86 7000 2.2800 0.7013 0.8818 0.7813 0.7727
0.0 153.06 7500 2.2149 0.7202 0.8784 0.7915 0.7790
0.0 163.27 8000 2.2384 0.7264 0.8663 0.7902 0.7834
0.0001 173.47 8500 2.2177 0.7269 0.8682 0.7913 0.7842
0.0 183.67 9000 2.2768 0.7333 0.8731 0.7971 0.7872
0.0 193.88 9500 2.2996 0.7344 0.8716 0.7972 0.7878
0.0 204.08 10000 2.3482 0.7244 0.8755 0.7928 0.7835

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
16
Safetensors
Model size
284M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kavg/LiLT-SER-JA

Finetuned
(29)
this model
Finetunes
1 model

Evaluation results