LiLT-SER-PT / README.md
kavg's picture
End of training
45138bf verified
metadata
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: LiLT-SER-PT
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xfun
          type: xfun
          config: xfun.pt
          split: validation
          args: xfun.pt
        metrics:
          - name: Precision
            type: precision
            value: 0.6997755331088664
          - name: Recall
            type: recall
            value: 0.7550711474417197
          - name: F1
            type: f1
            value: 0.72637250618902
          - name: Accuracy
            type: accuracy
            value: 0.7709534665415047

LiLT-SER-PT

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1403
  • Precision: 0.6998
  • Recall: 0.7551
  • F1: 0.7264
  • Accuracy: 0.7710

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.0838 8.47 500 0.7697 0.6542 1.0006 0.6081 0.7078
0.0366 16.95 1000 0.7606 0.6795 1.4063 0.6533 0.7078
0.0173 25.42 1500 0.7848 0.7047 1.4681 0.6752 0.7369
0.0036 33.9 2000 0.7706 0.7003 1.6267 0.6577 0.7487
0.0023 42.37 2500 1.6728 0.6839 0.7172 0.7002 0.7698
0.0001 50.85 3000 1.6210 0.6742 0.7493 0.7098 0.7941
0.0001 59.32 3500 1.6883 0.6962 0.7505 0.7223 0.7929
0.0007 67.8 4000 1.8709 0.6730 0.7590 0.7134 0.7811
0.0003 76.27 4500 1.9387 0.6884 0.7151 0.7015 0.7690
0.0034 84.75 5000 1.8042 0.6927 0.7554 0.7227 0.7787
0.0 93.22 5500 2.0395 0.6954 0.7596 0.7261 0.7527
0.0003 101.69 6000 1.9295 0.6861 0.7511 0.7172 0.7790
0.0001 110.17 6500 1.9690 0.6813 0.7611 0.7190 0.7694
0.0 118.64 7000 1.9217 0.6974 0.7520 0.7237 0.7754
0.0001 127.12 7500 2.0703 0.6885 0.7536 0.7196 0.7694
0.0002 135.59 8000 2.0438 0.6915 0.7635 0.7258 0.7770
0.0 144.07 8500 2.0429 0.6980 0.7599 0.7276 0.7782
0.0 152.54 9000 2.1403 0.6998 0.7551 0.7264 0.7710
0.0 161.02 9500 2.1786 0.6986 0.7578 0.7270 0.7726
0.0 169.49 10000 2.1782 0.6965 0.7560 0.7250 0.7721

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1