|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- thennal/IMaSC |
|
- vrclc/openslr63 |
|
- thennal/indic_tts_ml |
|
- kavyamanohar/ml-sentences |
|
model-index: |
|
- name: XLSR-WithLM-Malayalam |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: OpenSLR Malayalam -Test |
|
type: vrclc/openslr63 |
|
config: ml |
|
split: test |
|
args: ml |
|
metrics: |
|
- type: wer |
|
value: 27.3 |
|
name: WER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Goole Fleurs |
|
type: google/fleurs |
|
config: ml |
|
split: test |
|
args: ml |
|
metrics: |
|
- type: wer |
|
value: 37.2 |
|
name: WER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: MSC |
|
type: smcproject/msc |
|
config: ml |
|
split: train |
|
args: ml |
|
metrics: |
|
- type: wer |
|
value: 52.9 |
|
name: WER |
|
--- |
|
# XLSR-WithLM-Malayalam |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [IMASC](https://huggingface.co/datasets/thennal/IMaSC), [Indic TTS Malayalam](https://huggingface.co/datasets/thennal/indic_tts_ml), [OpenSLR Malayalam Train split](https://huggingface.co/datasets/vrclc/openslr63) datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1395 |
|
- Wer: 0.2952 |
|
|
|
Trigram Language Model Trained using KENLM Library on [kavyamanohar/ml-sentences](https://huggingface.co/datasets/kavyamanohar/ml-sentences) dataset |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00024 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 800 |
|
- num_epochs: 1 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 1.4912 | 0.1165 | 1000 | 0.5497 | 0.7011 | |
|
| 0.5377 | 0.2330 | 2000 | 0.3292 | 0.5364 | |
|
| 0.4343 | 0.3494 | 3000 | 0.2475 | 0.4424 | |
|
| 0.3678 | 0.4659 | 4000 | 0.2145 | 0.4014 | |
|
| 0.3345 | 0.5824 | 5000 | 0.1898 | 0.3774 | |
|
| 0.3029 | 0.6989 | 6000 | 0.1718 | 0.3441 | |
|
| 0.2685 | 0.8153 | 7000 | 0.1517 | 0.3135 | |
|
| 0.2385 | 0.9318 | 8000 | 0.1395 | 0.2952 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |