Edit model card

rubert-tiny2-ner-drugname

This model is a fine-tuned version of cointegrated/rubert-tiny2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0549
  • Precision: 0.7232
  • Recall: 0.7690
  • F1: 0.7454
  • Accuracy: 0.9883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 61 0.0493 0.6413 0.7468 0.6901 0.9833
No log 2.0 122 0.0417 0.6406 0.8291 0.7228 0.9855
No log 3.0 183 0.0387 0.7588 0.7468 0.7528 0.9879
No log 4.0 244 0.0396 0.7385 0.7595 0.7488 0.9883
No log 5.0 305 0.0425 0.6897 0.7595 0.7229 0.9874
No log 6.0 366 0.0465 0.6991 0.7722 0.7338 0.9876
No log 7.0 427 0.0487 0.7062 0.7911 0.7463 0.9877
No log 8.0 488 0.0521 0.7076 0.7658 0.7356 0.9882
0.0306 9.0 549 0.0540 0.7262 0.7722 0.7485 0.9883
0.0306 10.0 610 0.0549 0.7232 0.7690 0.7454 0.9883

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
29.1M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kazars24/rubert-tiny2-ner-drugname

Finetuned
(37)
this model