File size: 27,245 Bytes
b601e2b
 
 
 
 
 
 
 
b1dfde5
b601e2b
 
 
 
 
7631607
b1dfde5
 
b601e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bac280a
b601e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bac280a
dfed601
bac280a
dfed601
 
 
 
 
 
 
 
 
 
 
7631607
 
dfed601
7631607
 
 
 
 
bac280a
 
7631607
dfed601
 
 
 
 
d42bebb
7631607
 
dfed601
 
bac280a
dfed601
 
4efc279
a049df6
 
 
 
 
 
 
 
 
 
 
 
 
4efc279
d44d9e7
7631607
bac280a
 
 
 
 
 
 
 
 
 
 
 
 
7631607
a049df6
ecd4866
c2b8485
a049df6
ecd4866
 
 
7631607
 
a049df6
 
7631607
4efc279
094a253
 
a049df6
 
 
 
 
 
 
 
7631607
a049df6
 
4efc279
a049df6
 
7631607
bac280a
 
 
 
 
 
 
 
 
 
f6a2ce1
 
 
 
e510cdf
dfed601
e510cdf
 
f6a2ce1
e510cdf
f6a2ce1
 
 
 
 
 
 
 
 
 
e510cdf
2c29df9
 
 
f6a2ce1
 
e510cdf
 
 
dfed601
f6a2ce1
 
 
 
 
 
 
 
2c29df9
e510cdf
2c29df9
 
 
 
 
 
 
 
 
 
 
f6a2ce1
2c29df9
f6a2ce1
e510cdf
 
 
f6a2ce1
 
 
 
 
 
 
 
dfed601
 
 
 
 
 
 
 
 
 
 
 
 
 
d42bebb
b1dfde5
 
d42bebb
 
 
 
 
 
dfed601
b1dfde5
f6a2ce1
 
 
 
 
 
 
 
e510cdf
 
f6a2ce1
 
 
e510cdf
 
f6a2ce1
e510cdf
f6a2ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
e510cdf
f6a2ce1
 
 
 
 
 
 
 
 
 
 
 
d42bebb
 
 
7631607
 
f6a2ce1
 
d425c00
 
 
 
 
 
 
 
 
 
 
 
f6a2ce1
 
 
 
 
 
 
d425c00
 
f6a2ce1
 
 
 
b601e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eb5a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f2374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23e3936
c2f2374
23e3936
 
 
c2f2374
23e3936
c2f2374
23e3936
c2f2374
 
23e3936
8f363f6
c2f2374
 
 
 
 
 
 
 
094a253
c2f2374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
094a253
 
c2f2374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b601e2b
bac280a
b601e2b
bac280a
 
d425c00
b601e2b
 
 
 
dfed601
 
 
 
 
 
 
 
a049df6
d425c00
 
b601e2b
 
 
dfed601
f6a2ce1
120649d
 
f6a2ce1
b601e2b
7631607
b601e2b
 
9eb5a46
7631607
d44d9e7
5d45331
 
7631607
9eb5a46
 
c2f2374
 
 
 
 
 
 
b601e2b
120649d
 
b1dfde5
8f363f6
 
 
c2f2374
b601e2b
 
 
 
d425c00
b601e2b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction 

import io
from PIL import Image as PImage
import numpy as np
from collections import defaultdict
import cv2
from typing import Tuple, List

from scipy.spatial.distance import cdist

from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping

DUMP_IMG = False
if DUMP_IMG:
  from scipy.sparse import random

def empty_solution():
    '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
    return np.zeros((2,3)), [(0, 1)]
    

def convert_entry_to_human_readable(entry):
    out = {}
    already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
    for k, v in entry.items():
        if k in already_good:
            out[k] = v
            continue
        if k == 'points3d':
            out[k] = read_points3D_binary(fid=io.BytesIO(v))
        if k == 'cameras':
            out[k] = read_cameras_binary(fid=io.BytesIO(v))
        if k == 'images':
            out[k] = read_images_binary(fid=io.BytesIO(v))
        if k in ['ade20k', 'gestalt']:
            out[k] =  [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
        if k == 'depthcm':
            out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]

    return out


def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.0):
    '''Get the vertices and edges from the gestalt segmentation mask of the house'''
    vertices = []
    connections = []
    # Apex
    apex_color = np.array(gestalt_color_mapping['apex'])
    apex_mask = cv2.inRange(gest_seg_np,  apex_color-0.5, apex_color+0.5)
    if apex_mask.sum() > 0:
        output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
        (numLabels, labels, stats, centroids) = output
        stats, centroids = stats[1:], centroids[1:]
        
        for i in range(numLabels-1):
            vert = {"xy": centroids[i], "type": "apex"}
            vertices.append(vert)
    
    eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
    eave_end_mask = cv2.inRange(gest_seg_np,  eave_end_color-0.5, eave_end_color+0.5)
    if eave_end_mask.sum() > 0:
        output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
        (numLabels, labels, stats, centroids) = output
        stats, centroids = stats[1:], centroids[1:]
        
        for i in range(numLabels-1):
            vert = {"xy": centroids[i], "type": "eave_end_point"}
            vertices.append(vert) 
    # Connectivity
    apex_pts = []
    apex_pts_idxs = []
    for j, v in enumerate(vertices):
        apex_pts.append(v['xy'])
        apex_pts_idxs.append(j)
    apex_pts = np.array(apex_pts)
            
    # Ridge connects two apex points
    for edge_class in ['eave', 'ridge', 'rake', 'valley']:
        edge_color = np.array(gestalt_color_mapping[edge_class])
        mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
                                            edge_color-0.5,
                                            edge_color+0.5),
                                cv2.MORPH_DILATE, np.ones((11, 11)))
        line_img = np.copy(gest_seg_np) * 0
        if mask.sum() > 0:
            output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
            (numLabels, labels, stats, centroids) = output
            stats, centroids = stats[1:], centroids[1:]
            edges = []
            for i in range(1, numLabels):
                y,x = np.where(labels == i)
                xleft_idx = np.argmin(x)
                x_left = x[xleft_idx]
                y_left = y[xleft_idx]
                xright_idx = np.argmax(x)
                x_right = x[xright_idx]
                y_right = y[xright_idx]
                edges.append((x_left, y_left, x_right, y_right))
                cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
            edges = np.array(edges)
            if (len(apex_pts) < 2) or len(edges) <1:
                continue
            pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
            connectivity_mask = pts_to_edges_dist <= edge_th
            edge_connects = connectivity_mask.sum(axis=0)
            for edge_idx, edgesum in enumerate(edge_connects):
                if edgesum>=2:
                    connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
                    for a_i, a in enumerate(connected_verts):
                        for b in connected_verts[a_i+1:]:
                            connections.append((a, b))
    return vertices, connections

def get_uv_depth(vertices, depth):
    '''Get the depth of the vertices from the depth image'''
    uv = []
    for v in vertices:
        uv.append(v['xy'])
    uv = np.array(uv)
    uv_int = uv.astype(np.int32)
    H, W = depth.shape[:2]
    uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
    uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
    vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
    return uv, vertex_depth

def get_smooth_uv_depth(vertices, depth, gest_seg_np, sfm_depth_np):
    '''Get the depth of the vertices from the depth image'''
    #print(f'max depth = {np.max(depth)}')
    uv = []
    for v in vertices:
        uv.append(v['xy'])
    uv = np.array(uv)
    uv_int = uv.astype(np.int32)
    H, W = depth.shape[:2]
    a = np.clip( uv_int[:, 0], 0, W-1)
    b = np.clip( uv_int[:, 1], 0, H-1)    
    def get_local_depth(x,y, H, W, depth, r=5):
      '''return a smooth version of detph in radius r'''      
      local_depths = []
      for i in range(max(0, x - r), min(W, x + r)):
        for j in range(max(0, y - r), min(H, y + r)):
            if np.sqrt((i - x)**2 + (j - y)**2) <= r:
              if sfm_depth_np is not None:
                if sfm_depth_np[j, i] != 0:
                  local_depths.append(sfm_depth_np[j, i])
                else:
                  local_depths.append(depth[j, i])
              else:
                local_depths.append(depth[j, i])

      return local_depths
    
    vertex_depth = []
    for x,y in zip(a,b):
      local_depths = get_local_depth(x,y, H, W, depth, 5)
      #print(f'local_depths={local_depths}')
      #local_mean = np.mean(local_depths)
      local_mean = np.min(local_depths)
      vertex_depth.append(local_mean)

    vertex_depth = np.array(vertex_depth)
    return uv, vertex_depth

'''
from numba import njit, prange
@njit(parallel=True)
def fill_range(u, v, z, dilate_r, c, sfm_depth_np, sfm_color_np, H, W):
  for i in prange(max(0, u - dilate_r), min(W, u + dilate_r)):
      for j in prange(max(0, v - dilate_r), min(H, v + dilate_r)) :
        #checked+=1
        existing_z = sfm_depth_np[j, i]
        if z > 0:
          if (existing_z!=0 and z < existing_z) or (existing_z==0):
            sfm_depth_np[j, i] = z
            if DUMP_IMG: 
              sfm_color_np[j, i] = c
  return sfm_depth_np, sfm_color_np
'''

def get_SfM_depth(points3D, depth_np, gest_seg_np, K, R, t, dilate_r = 5):
  '''Project 3D sfm pointcloud to the image plane '''
  H, W = depth_np.shape[:2]
  sfm_depth_np = np.zeros(depth_np.shape)
  sfm_color_np = np.zeros(gest_seg_np.shape)
  #XYZ1 = np.stack([(p.xyz, 1) for p in points3D.values()])    
  XYZ = np.stack([p.xyz for p in points3D.values()])
  rgb = np.stack([p.rgb for p in points3D.values()])
  #print('XYZ is ', XYZ.shape)
  XYZ1 = np.concatenate((XYZ, np.ones((len(XYZ), 1))), axis=1)
  #print('XYZ1 is ', XYZ1.shape)
  Rt = np.concatenate( (R, t.reshape((3,1))), axis=1)
  world_to_cam = K @ Rt
  xyz = world_to_cam @ XYZ1.transpose()
  xyz = np.transpose(xyz)  
  #print('shape of xyz: ', xyz.shape)
  valid_idx = ~np.isclose(xyz[:,2], 0, atol=1e-2) & ~np.isnan(xyz[:,0]) & ~np.isnan(xyz[:,1]) & ~np.isnan(xyz[:,2]) 
  xyz = xyz[valid_idx, :]
  us, vs, zs = xyz[:,0]/xyz[:,2], xyz[:,1]/xyz[:,2], xyz[:,2]
  #print('dim of us uv zs rgb:', len(us), len(vs), len(zs), len(rgb))  
  us = us[~np.isnan(us)]
  vs = vs[~np.isnan(vs)]
  us = us.astype(np.int32)    
  vs = vs.astype(np.int32)
  #checked = 0  
  #print('dim of us uv zs rgb:', len(us), len(vs), len(zs), len(rgb))
  for u,v,z,c in zip(us,vs,zs, rgb):
    '''
    sfm_depth_np, sfm_color_np = fill_range(u, v, z, dilate_r, c, sfm_depth_np, sfm_color_np, H, W)
    '''
    i_range = range(max(0, u - dilate_r), min(W, u + dilate_r))
    j_range = range(max(0, v - dilate_r), min(H, v + dilate_r)) 
    for i in i_range:
      for j in j_range:
        #checked+=1
        existing_z = sfm_depth_np[j, i]
        if z > 0:
          if (existing_z!=0 and z < existing_z) or (existing_z==0):
            sfm_depth_np[j, i] = z
            if DUMP_IMG: 
              sfm_color_np[j, i] = c
         
              
  #print(f'checked {checked} pts')

  if DUMP_IMG:
    filename_sfm_depth = 'sfm_depth.png'
    cv2.imwrite(filename_sfm_depth, sfm_depth_np/100)
    filename_sfm_color = 'sfm_color.png'
    cv2.imwrite(filename_sfm_color, sfm_color_np)
    filename_ref_depth = 'ref_depth.png'
    cv2.imwrite(filename_ref_depth, depth_np/100)

  return sfm_depth_np

def get_vertices_and_edges_from_two_segmentations(ade_seg_np, gest_seg_np, edge_th = 50.0):
    '''Get the vertices and edges from the gestalt segmentation mask of the house'''
    vertices = []
    connections = []

    color_th =  10.0 # Cost ->2.6

    #-------------------------    
    # combined map from ade
    #print(gest_seg_np.shape, ade_seg_np.shape)
    ade_color0 = np.array([0,0,0]) 
    ade_mask0 = cv2.inRange(ade_seg_np,  ade_color0-0.5, ade_color0+0.5)
    ade_color1 = np.array([120,120,120]) 
    ade_mask1 = cv2.inRange(ade_seg_np,  ade_color1-0.5, ade_color1+0.5)
    ade_color2 = np.array([180,120,120]) 
    ade_mask2 = cv2.inRange(ade_seg_np,  ade_color2-0.5, ade_color2+0.5)
    ade_color3 = np.array([255,9,224]) 
    ade_mask3 = cv2.inRange(ade_seg_np,  ade_color3-0.5, ade_color3+0.5)
    ade_mask = cv2.bitwise_or(ade_mask3, ade_mask2)
    ade_mask = cv2.bitwise_or(ade_mask1, ade_mask)
    #print(ade_mask.any())
    apex_map = np.zeros(ade_seg_np.shape)
    apex_map_on_ade = ade_seg_np 
    apex_map_on_gest = gest_seg_np
    # Apex
    apex_color = np.array(gestalt_color_mapping['apex'])
    #print(f'apex_color= {apex_color}')
    #apex_mask = cv2.inRange(gest_seg_np,  apex_color-0.5, apex_color+0.5) 
    apex_mask = cv2.inRange(gest_seg_np,  apex_color-color_th, apex_color+color_th) # include more pts
    #apex_mask = cv2.bitwise_and(apex_mask, ade_mask) # remove pts
    if apex_mask.sum() > 0:
        output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
        (numLabels, labels, stats, centroids) = output
        stats, centroids = stats[1:], centroids[1:]
        
        for i in range(numLabels-1):
            vert = {"xy": centroids[i], "type": "apex"}
            vertices.append(vert)

            #print(f'centroids[i]={centroids[i]}')
            uu = int(centroids[i][1])
            vv = int(centroids[i][0])
            # plot a cross
            apex_map_on_ade[uu, vv] = (255,255,255)
            shift=[(1,0),(-1,0),(0,1),(0,-1), (2,0),(-2,0),(0,2),(0,-2), (3,0),(-3,0),(0,3),(0,-3)]
            h,w,_ = apex_map_on_ade.shape
            for ss in shift:
              if uu+ss[0] >= 0 and uu+ss[0] < h and vv+ss[1] >= 0 and vv+ss[1] < w:
                apex_map[uu+ss[0], vv+ss[1]] = (255,255,255)
                apex_map_on_ade[uu+ss[0], vv+ss[1]] = (255,255,255)
                apex_map_on_gest[uu+ss[0], vv+ss[1]] = (255,255,255)
    

    eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
    #eave_end_mask = cv2.inRange(gest_seg_np,  eave_end_color-0.5, eave_end_color+0.5)
    eave_end_mask = cv2.inRange(gest_seg_np,  eave_end_color-color_th, eave_end_color+color_th)
    #eave_end_mask = cv2.bitwise_and(eave_end_mask, ade_mask)
    if eave_end_mask.sum() > 0:
        output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
        (numLabels, labels, stats, centroids) = output
        stats, centroids = stats[1:], centroids[1:]
        
        for i in range(numLabels-1):
            vert = {"xy": centroids[i], "type": "eave_end_point"}
            vertices.append(vert) 

            uu = int(centroids[i][1])
            vv = int(centroids[i][0])
            # plot a cross
            apex_map_on_ade[uu, vv] = (255,0,0)
            shift=[(1,0),(-1,0),(0,1),(0,-1), (2,0),(-2,0),(0,2),(0,-2), (3,0),(-3,0),(0,3),(0,-3)]
            h,w,_ = apex_map_on_ade.shape
            for ss in shift:
              if uu+ss[0] >= 0 and uu+ss[0] < h and vv+ss[1] >= 0 and vv+ss[1] < w:
                apex_map[uu+ss[0], vv+ss[1]] = (255,0,0)
                apex_map_on_ade[uu+ss[0], vv+ss[1]] = (255,0,0)
                apex_map_on_gest[uu+ss[0], vv+ss[1]] = (255,0,0)

    # imsave apex and eave_end
    if DUMP_IMG:
      import random
      rid = random.random()
      filename_apex_ade = f'apex_map_on_ade_{rid}.jpg'
      cv2.imwrite(filename_apex_ade, apex_map_on_ade)
      filename_apex_gest = f'apex_map_on_gest_{rid}.jpg'
      cv2.imwrite(filename_apex_gest, apex_map_on_gest)
      filename_apex_map = f'apex_map_{rid}.jpg'
      cv2.imwrite(filename_apex_map, apex_map)

    #print(f'{len(vertices)} vertices detected')
    # Connectivity
    apex_pts = []
    apex_pts_idxs = []
    for j, v in enumerate(vertices):
        apex_pts.append(v['xy'])
        apex_pts_idxs.append(j)
    apex_pts = np.array(apex_pts)
            
    # Ridge connects two apex points    
    line_img = np.copy(gest_seg_np) * 0
    for edge_class in ['eave', 'ridge', 'rake', 'valley']:
        edge_color = np.array(gestalt_color_mapping[edge_class])
        mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
                                            edge_color-color_th,
                                            edge_color+color_th),
                                cv2.MORPH_DILATE, np.ones((11, 11)))
        #line_img = np.copy(gest_seg_np) * 0
        if mask.sum() > 0:
            output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
            (numLabels, labels, stats, centroids) = output
            stats, centroids = stats[1:], centroids[1:]
            edges = []
            for i in range(1, numLabels):
                y,x = np.where(labels == i)
                xleft_idx = np.argmin(x)
                x_left = x[xleft_idx]
                y_left = y[xleft_idx]
                xright_idx = np.argmax(x)
                x_right = x[xright_idx]
                y_right = y[xright_idx]
                edges.append((x_left, y_left, x_right, y_right))
                cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)          
            edges = np.array(edges)
            if (len(apex_pts) < 2) or len(edges) <1:
                continue
            pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
            connectivity_mask = pts_to_edges_dist <= edge_th
            edge_connects = connectivity_mask.sum(axis=0)
            for edge_idx, edgesum in enumerate(edge_connects):
                if edgesum>=2:
                    connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
                    for a_i, a in enumerate(connected_verts):
                        for b in connected_verts[a_i+1:]:
                            connections.append((a, b))
    if DUMP_IMG: 
      filename_edges_map = f'edges_map_{rid}.jpg'
      cv2.imwrite(filename_edges_map, line_img)
      
      
    return vertices, connections

def get_uv_dept_category(vertices, depth, ade_seg):
    '''Get the depth of the vertices from the depth image'''
    uv = []
    for v in vertices:
        uv.append(v['xy'])
    uv = np.array(uv)
    uv_int = uv.astype(np.int32)
    H, W = depth.shape[:2]
    uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
    uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
    vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
    vertex_category = ade_seg[(uv_int[:, 1] , uv_int[:, 0])]
    target_color = set([(120,120,120), (180, 120, 120), (255,9,224)])
    #filter_ind = [i for i, ele in enumerate(vertex_category) if tuple(ele) in target_color]
    filter_ind = []
    for i, ele in enumerate(vertex_category):
      if tuple(ele) in target_color:
        filter_ind.append(i)

    print(f'retain {len(filter_ind)} idx')
    print(vertex_category[filter_ind])
    #print(vertices)
    #print(filter_ind)
    vertices = [vertices[i] for i in filter_ind]
    return uv[filter_ind], vertex_depth[filter_ind], vertex_category[filter_ind], vertices

def merge_vertices_3d(vert_edge_per_image, th=0.1):
    '''Merge vertices that are close to each other in 3D space and are of same types'''
    all_3d_vertices = []
    connections_3d = []
    all_indexes = []
    cur_start = 0
    types = []
    for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
        types += [int(v['type']=='apex') for v in vertices]
        all_3d_vertices.append(vertices_3d)
        connections_3d+=[(x+cur_start,y+cur_start) for (x,y) in connections]
        cur_start+=len(vertices_3d)
    all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
    #print (connections_3d)
    distmat = cdist(all_3d_vertices, all_3d_vertices)
    types = np.array(types).reshape(-1,1)
    same_types = cdist(types, types)
    mask_to_merge = (distmat <= th) & (same_types==0)
    new_vertices = []
    new_connections = []
    to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
    to_merge_final = defaultdict(list)
    for i in range(len(all_3d_vertices)):
        for j in to_merge:
            if i in j:
                to_merge_final[i]+=j
    for k, v in to_merge_final.items():
        to_merge_final[k] = list(set(v))
    already_there = set() 
    merged = []
    for k, v in to_merge_final.items():
        if k in already_there:
            continue
        merged.append(v)
        for vv in v:
            already_there.add(vv)
    old_idx_to_new = {}
    count=0
    for idxs in merged:
        new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
        for idx in idxs:
            old_idx_to_new[idx] = count
        count +=1
    #print (connections_3d)
    new_vertices=np.array(new_vertices)
    #print (connections_3d)
    for conn in connections_3d:
        new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
        if new_con[0] == new_con[1]:
            continue
        if new_con not in new_connections:
            new_connections.append(new_con)
    #print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
    return new_vertices, new_connections

def prune_not_connected(all_3d_vertices, connections_3d):
    '''Prune vertices that are not connected to any other vertex'''
    connected = defaultdict(list)
    for c in connections_3d:
        connected[c[0]].append(c)
        connected[c[1]].append(c)
    new_indexes = {}
    new_verts = []
    connected_out = []
    for k,v in connected.items():
        vert = all_3d_vertices[k]
        if tuple(vert) not in new_verts:
            new_verts.append(tuple(vert))
            new_indexes[k]=len(new_verts) -1
    for k,v in connected.items():
        for vv in v:
            connected_out.append((new_indexes[vv[0]],new_indexes[vv[1]]))
    connected_out=list(set(connected_out))                   
    
    return np.array(new_verts), connected_out

def uv_to_v3d(uv, depth_vert, K, R, t):
  # Normalize the uv to the camera intrinsics
  xy_local = np.ones((len(uv), 3))
  xy_local[:, 0] = (uv[:, 0] - K[0,2]) / K[0,0]
  xy_local[:, 1] = (uv[:, 1] - K[1,2]) / K[1,1]
  # Get the 3D vertices
  vertices_3d_local = depth_vert[...,None] * (xy_local/np.linalg.norm(xy_local, axis=1)[...,None])
  world_to_cam = np.eye(4)
  world_to_cam[:3, :3] = R
  world_to_cam[:3, 3] = t.reshape(-1)
  cam_to_world =  np.linalg.inv(world_to_cam)
  vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
  vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
  return vertices_3d

def delete_one_vert(vertices, vertices_3d, connections, vert_to_del):
  i = np.where(np.all(abs(vertices_3d - vert_to_del) < 0.01, axis=1))
  #print(i)
  #print(len(i[0]))
  if len(i[0])==0:
    if vertices:
      return vertices, vertices_3d, connections
    else:
        return vertices, vertices_3d, connections

  #print('to del idx=', i[0])
  idx = i[0]#[0]
  if vertices:
    vertices = np.delete(vertices, idx)
  vertices_3d = np.delete(vertices_3d, idx, axis=0)
  conn_to_del = []
  for ic, c in enumerate(connections):
    if c[0] == idx or c[1] == idx:
      conn_to_del.append(ic)
  connections = np.delete(connections, (conn_to_del), axis=0)
  for ic, c in enumerate(connections):
    if c[0] >= idx:   
      connections[ic] = (connections[ic][0]-1, connections[ic][1])
    if c[1] >= idx:      
      connections[ic] = (connections[ic][0], connections[ic][1]-1)
  
  #print(f'del {len(conn_to_del)} connections')  
  
  connections = connections.tolist()
  #print(vertices, vertices_3d, connections)
  if vertices:
    return vertices, vertices_3d, connections
  else:
    return vertices_3d, connections

def prune_far(all_3d_vertices, connections_3d, prune_dist_thr=3000):
    '''Prune vertices that are far away from any the other vertices'''
    if (len(all_3d_vertices) < 3) or len(connections_3d) < 1:
      return all_3d_vertices, connections_3d
    
    isolated = []
    distmat = cdist(all_3d_vertices, all_3d_vertices)    
    for i, v in enumerate(distmat):
      exclude_self = np.array([x for idx,x in enumerate(v) if idx!=i])
      #print('excluded:', exclude_self)
      #if np.any(exclude_self > prune_dist_thr):
      exclude_self = abs(exclude_self)
      if min(exclude_self) > prune_dist_thr:
        #print('del a pt w/ dist = ', min(exclude_self))
        isolated.append(i)
        break

    while isolated:
      isolated_pt = isolated.pop()
      #print('isolated:', isolated_pt)
      pt_to_del = all_3d_vertices[isolated_pt]
      all_3d_vertices, connections_3d = delete_one_vert([], all_3d_vertices, connections_3d, pt_to_del)
      if (len(all_3d_vertices) < 3) or len(connections_3d) < 1:
        return all_3d_vertices, connections_3d

      distmat = cdist(all_3d_vertices, all_3d_vertices)    
      for i, v in enumerate(distmat):
        exclude_self = np.array([x for idx,x in enumerate(v) if idx!=i])
        #if np.any(exclude_self > prune_dist_thr):
        exclude_self = abs(exclude_self)
        if min(exclude_self) > prune_dist_thr:
          #print('del a pt w/ dist = ', min(exclude_self))
          isolated.append(i)
          break
    
    return all_3d_vertices, connections_3d
    

def predict(entry, visualize=False, prune_dist_thr=600, depth_scale=2.5, ) -> Tuple[np.ndarray, List[int]]:
    good_entry = convert_entry_to_human_readable(entry)
    points3D = good_entry['points3d']
    vert_edge_per_image = {}
    for i, (ade, gest, depth, K, R, t) in enumerate(zip(
                                                good_entry['ade20k'],
                                                good_entry['gestalt'],
                                                good_entry['depthcm'], 
                                                good_entry['K'],
                                                good_entry['R'],
                                                good_entry['t'] 
                                                )):                                              
        ''' entry 0 suggests:
        depth_scale = 1
        if i==1: 
          depth_scale = 2.5
        elif i==2: # only visualize view 0,1
          continue 
        '''

        ade_seg = ade.resize(depth.size)
        ade_seg_np = np.array(ade_seg).astype(np.uint8)
        gest_seg = gest.resize(depth.size)
        gest_seg_np = np.array(gest_seg).astype(np.uint8)
        # Metric3D
        depth_np = np.array(depth) / depth_scale # / 2.5 # 2.5 is the scale estimation coefficient # don't use 2.5...
        #vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 20.)
        #vertices, connections = get_vertices_and_edges_from_two_segmentations(ade_seg_np, gest_seg_np, edge_th = 20.)
        vertices, connections = get_vertices_and_edges_from_two_segmentations(ade_seg_np, gest_seg_np, edge_th = 50.)
        
        if (len(vertices) < 2) or (len(connections) < 1):
            print (f'Not enough vertices ({len(vertices)}) or connections ({len(connections)}) in image {i}')
            vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
            continue
                
        #uv, depth_vert = get_uv_depth(vertices, depth_np)         
        sfm_depth_np = get_SfM_depth(points3D, depth_np, gest_seg_np, K, R, t, 5) # Sensitive. 10 is worse than 0 in testset
        uv, depth_vert = get_smooth_uv_depth(vertices, depth_np, gest_seg_np, sfm_depth_np)
        #uv, depth_vert = get_smooth_uv_depth(vertices, depth_np, gest_seg_np, None)        

        vertices_3d = uv_to_v3d(uv, depth_vert, K, R, t)        
        
        '''
        print('before del, ', len(vertices), len(vertices_3d), len(connections))
        vert_to_del = np.array([-2807.275, -4999.645, 1284.803])
        vertices, vertices_3d, connections = delete_one_vert(vertices, vertices_3d, connections, vert_to_del)        
        print('after del, ', len(vertices), len(vertices_3d), len(connections))
        '''     
        
        vert_edge_per_image[i] = vertices, connections, vertices_3d
    #all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 3.0) # TODO: 3cm looks too small    
    all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 30) 
    #print(f'after merge, {len(all_3d_vertices)} 3d vertices and {len(connections_3d)} 3d connections')
    #all_3d_vertices_clean, connections_3d_clean  = prune_not_connected(all_3d_vertices, connections_3d)    
    all_3d_vertices_clean, connections_3d_clean = prune_far(all_3d_vertices, connections_3d, prune_dist_thr=prune_dist_thr)
    #all_3d_vertices_clean, connections_3d_clean  = all_3d_vertices, connections_3d # don't prune -> cost:2.0
    #print(f'after pruning, {len(all_3d_vertices_clean)} 3d clean vertices and {len(connections_3d_clean)} 3d clean connections')    
    if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
        print (f'Not enough vertices or connections in the 3D vertices')
        return (good_entry['__key__'], *empty_solution())
    if visualize:
        print(f"num of est: {len(all_3d_vertices_clean)}, num of gt:{len(good_entry['wf_vertices'])}")
        from hoho.viz3d import plot_estimate_and_gt
        plot_estimate_and_gt(   all_3d_vertices_clean, 
                                connections_3d_clean, 
                                good_entry['wf_vertices'],
                                good_entry['wf_edges'])
    return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean