File size: 27,245 Bytes
b601e2b b1dfde5 b601e2b 7631607 b1dfde5 b601e2b bac280a b601e2b bac280a dfed601 bac280a dfed601 7631607 dfed601 7631607 bac280a 7631607 dfed601 d42bebb 7631607 dfed601 bac280a dfed601 4efc279 a049df6 4efc279 d44d9e7 7631607 bac280a 7631607 a049df6 ecd4866 c2b8485 a049df6 ecd4866 7631607 a049df6 7631607 4efc279 094a253 a049df6 7631607 a049df6 4efc279 a049df6 7631607 bac280a f6a2ce1 e510cdf dfed601 e510cdf f6a2ce1 e510cdf f6a2ce1 e510cdf 2c29df9 f6a2ce1 e510cdf dfed601 f6a2ce1 2c29df9 e510cdf 2c29df9 f6a2ce1 2c29df9 f6a2ce1 e510cdf f6a2ce1 dfed601 d42bebb b1dfde5 d42bebb dfed601 b1dfde5 f6a2ce1 e510cdf f6a2ce1 e510cdf f6a2ce1 e510cdf f6a2ce1 e510cdf f6a2ce1 d42bebb 7631607 f6a2ce1 d425c00 f6a2ce1 d425c00 f6a2ce1 b601e2b 9eb5a46 c2f2374 23e3936 c2f2374 23e3936 c2f2374 23e3936 c2f2374 23e3936 c2f2374 23e3936 8f363f6 c2f2374 094a253 c2f2374 094a253 c2f2374 b601e2b bac280a b601e2b bac280a d425c00 b601e2b dfed601 a049df6 d425c00 b601e2b dfed601 f6a2ce1 120649d f6a2ce1 b601e2b 7631607 b601e2b 9eb5a46 7631607 d44d9e7 5d45331 7631607 9eb5a46 c2f2374 b601e2b 120649d b1dfde5 8f363f6 c2f2374 b601e2b d425c00 b601e2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
import io
from PIL import Image as PImage
import numpy as np
from collections import defaultdict
import cv2
from typing import Tuple, List
from scipy.spatial.distance import cdist
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
DUMP_IMG = False
if DUMP_IMG:
from scipy.sparse import random
def empty_solution():
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
return np.zeros((2,3)), [(0, 1)]
def convert_entry_to_human_readable(entry):
out = {}
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
for k, v in entry.items():
if k in already_good:
out[k] = v
continue
if k == 'points3d':
out[k] = read_points3D_binary(fid=io.BytesIO(v))
if k == 'cameras':
out[k] = read_cameras_binary(fid=io.BytesIO(v))
if k == 'images':
out[k] = read_images_binary(fid=io.BytesIO(v))
if k in ['ade20k', 'gestalt']:
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
if k == 'depthcm':
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
return out
def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.0):
'''Get the vertices and edges from the gestalt segmentation mask of the house'''
vertices = []
connections = []
# Apex
apex_color = np.array(gestalt_color_mapping['apex'])
apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
if apex_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "apex"}
vertices.append(vert)
eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
if eave_end_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "eave_end_point"}
vertices.append(vert)
# Connectivity
apex_pts = []
apex_pts_idxs = []
for j, v in enumerate(vertices):
apex_pts.append(v['xy'])
apex_pts_idxs.append(j)
apex_pts = np.array(apex_pts)
# Ridge connects two apex points
for edge_class in ['eave', 'ridge', 'rake', 'valley']:
edge_color = np.array(gestalt_color_mapping[edge_class])
mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
edge_color-0.5,
edge_color+0.5),
cv2.MORPH_DILATE, np.ones((11, 11)))
line_img = np.copy(gest_seg_np) * 0
if mask.sum() > 0:
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
edges = []
for i in range(1, numLabels):
y,x = np.where(labels == i)
xleft_idx = np.argmin(x)
x_left = x[xleft_idx]
y_left = y[xleft_idx]
xright_idx = np.argmax(x)
x_right = x[xright_idx]
y_right = y[xright_idx]
edges.append((x_left, y_left, x_right, y_right))
cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
edges = np.array(edges)
if (len(apex_pts) < 2) or len(edges) <1:
continue
pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
connectivity_mask = pts_to_edges_dist <= edge_th
edge_connects = connectivity_mask.sum(axis=0)
for edge_idx, edgesum in enumerate(edge_connects):
if edgesum>=2:
connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
for a_i, a in enumerate(connected_verts):
for b in connected_verts[a_i+1:]:
connections.append((a, b))
return vertices, connections
def get_uv_depth(vertices, depth):
'''Get the depth of the vertices from the depth image'''
uv = []
for v in vertices:
uv.append(v['xy'])
uv = np.array(uv)
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
return uv, vertex_depth
def get_smooth_uv_depth(vertices, depth, gest_seg_np, sfm_depth_np):
'''Get the depth of the vertices from the depth image'''
#print(f'max depth = {np.max(depth)}')
uv = []
for v in vertices:
uv.append(v['xy'])
uv = np.array(uv)
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
a = np.clip( uv_int[:, 0], 0, W-1)
b = np.clip( uv_int[:, 1], 0, H-1)
def get_local_depth(x,y, H, W, depth, r=5):
'''return a smooth version of detph in radius r'''
local_depths = []
for i in range(max(0, x - r), min(W, x + r)):
for j in range(max(0, y - r), min(H, y + r)):
if np.sqrt((i - x)**2 + (j - y)**2) <= r:
if sfm_depth_np is not None:
if sfm_depth_np[j, i] != 0:
local_depths.append(sfm_depth_np[j, i])
else:
local_depths.append(depth[j, i])
else:
local_depths.append(depth[j, i])
return local_depths
vertex_depth = []
for x,y in zip(a,b):
local_depths = get_local_depth(x,y, H, W, depth, 5)
#print(f'local_depths={local_depths}')
#local_mean = np.mean(local_depths)
local_mean = np.min(local_depths)
vertex_depth.append(local_mean)
vertex_depth = np.array(vertex_depth)
return uv, vertex_depth
'''
from numba import njit, prange
@njit(parallel=True)
def fill_range(u, v, z, dilate_r, c, sfm_depth_np, sfm_color_np, H, W):
for i in prange(max(0, u - dilate_r), min(W, u + dilate_r)):
for j in prange(max(0, v - dilate_r), min(H, v + dilate_r)) :
#checked+=1
existing_z = sfm_depth_np[j, i]
if z > 0:
if (existing_z!=0 and z < existing_z) or (existing_z==0):
sfm_depth_np[j, i] = z
if DUMP_IMG:
sfm_color_np[j, i] = c
return sfm_depth_np, sfm_color_np
'''
def get_SfM_depth(points3D, depth_np, gest_seg_np, K, R, t, dilate_r = 5):
'''Project 3D sfm pointcloud to the image plane '''
H, W = depth_np.shape[:2]
sfm_depth_np = np.zeros(depth_np.shape)
sfm_color_np = np.zeros(gest_seg_np.shape)
#XYZ1 = np.stack([(p.xyz, 1) for p in points3D.values()])
XYZ = np.stack([p.xyz for p in points3D.values()])
rgb = np.stack([p.rgb for p in points3D.values()])
#print('XYZ is ', XYZ.shape)
XYZ1 = np.concatenate((XYZ, np.ones((len(XYZ), 1))), axis=1)
#print('XYZ1 is ', XYZ1.shape)
Rt = np.concatenate( (R, t.reshape((3,1))), axis=1)
world_to_cam = K @ Rt
xyz = world_to_cam @ XYZ1.transpose()
xyz = np.transpose(xyz)
#print('shape of xyz: ', xyz.shape)
valid_idx = ~np.isclose(xyz[:,2], 0, atol=1e-2) & ~np.isnan(xyz[:,0]) & ~np.isnan(xyz[:,1]) & ~np.isnan(xyz[:,2])
xyz = xyz[valid_idx, :]
us, vs, zs = xyz[:,0]/xyz[:,2], xyz[:,1]/xyz[:,2], xyz[:,2]
#print('dim of us uv zs rgb:', len(us), len(vs), len(zs), len(rgb))
us = us[~np.isnan(us)]
vs = vs[~np.isnan(vs)]
us = us.astype(np.int32)
vs = vs.astype(np.int32)
#checked = 0
#print('dim of us uv zs rgb:', len(us), len(vs), len(zs), len(rgb))
for u,v,z,c in zip(us,vs,zs, rgb):
'''
sfm_depth_np, sfm_color_np = fill_range(u, v, z, dilate_r, c, sfm_depth_np, sfm_color_np, H, W)
'''
i_range = range(max(0, u - dilate_r), min(W, u + dilate_r))
j_range = range(max(0, v - dilate_r), min(H, v + dilate_r))
for i in i_range:
for j in j_range:
#checked+=1
existing_z = sfm_depth_np[j, i]
if z > 0:
if (existing_z!=0 and z < existing_z) or (existing_z==0):
sfm_depth_np[j, i] = z
if DUMP_IMG:
sfm_color_np[j, i] = c
#print(f'checked {checked} pts')
if DUMP_IMG:
filename_sfm_depth = 'sfm_depth.png'
cv2.imwrite(filename_sfm_depth, sfm_depth_np/100)
filename_sfm_color = 'sfm_color.png'
cv2.imwrite(filename_sfm_color, sfm_color_np)
filename_ref_depth = 'ref_depth.png'
cv2.imwrite(filename_ref_depth, depth_np/100)
return sfm_depth_np
def get_vertices_and_edges_from_two_segmentations(ade_seg_np, gest_seg_np, edge_th = 50.0):
'''Get the vertices and edges from the gestalt segmentation mask of the house'''
vertices = []
connections = []
color_th = 10.0 # Cost ->2.6
#-------------------------
# combined map from ade
#print(gest_seg_np.shape, ade_seg_np.shape)
ade_color0 = np.array([0,0,0])
ade_mask0 = cv2.inRange(ade_seg_np, ade_color0-0.5, ade_color0+0.5)
ade_color1 = np.array([120,120,120])
ade_mask1 = cv2.inRange(ade_seg_np, ade_color1-0.5, ade_color1+0.5)
ade_color2 = np.array([180,120,120])
ade_mask2 = cv2.inRange(ade_seg_np, ade_color2-0.5, ade_color2+0.5)
ade_color3 = np.array([255,9,224])
ade_mask3 = cv2.inRange(ade_seg_np, ade_color3-0.5, ade_color3+0.5)
ade_mask = cv2.bitwise_or(ade_mask3, ade_mask2)
ade_mask = cv2.bitwise_or(ade_mask1, ade_mask)
#print(ade_mask.any())
apex_map = np.zeros(ade_seg_np.shape)
apex_map_on_ade = ade_seg_np
apex_map_on_gest = gest_seg_np
# Apex
apex_color = np.array(gestalt_color_mapping['apex'])
#print(f'apex_color= {apex_color}')
#apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
apex_mask = cv2.inRange(gest_seg_np, apex_color-color_th, apex_color+color_th) # include more pts
#apex_mask = cv2.bitwise_and(apex_mask, ade_mask) # remove pts
if apex_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "apex"}
vertices.append(vert)
#print(f'centroids[i]={centroids[i]}')
uu = int(centroids[i][1])
vv = int(centroids[i][0])
# plot a cross
apex_map_on_ade[uu, vv] = (255,255,255)
shift=[(1,0),(-1,0),(0,1),(0,-1), (2,0),(-2,0),(0,2),(0,-2), (3,0),(-3,0),(0,3),(0,-3)]
h,w,_ = apex_map_on_ade.shape
for ss in shift:
if uu+ss[0] >= 0 and uu+ss[0] < h and vv+ss[1] >= 0 and vv+ss[1] < w:
apex_map[uu+ss[0], vv+ss[1]] = (255,255,255)
apex_map_on_ade[uu+ss[0], vv+ss[1]] = (255,255,255)
apex_map_on_gest[uu+ss[0], vv+ss[1]] = (255,255,255)
eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
#eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-color_th, eave_end_color+color_th)
#eave_end_mask = cv2.bitwise_and(eave_end_mask, ade_mask)
if eave_end_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "eave_end_point"}
vertices.append(vert)
uu = int(centroids[i][1])
vv = int(centroids[i][0])
# plot a cross
apex_map_on_ade[uu, vv] = (255,0,0)
shift=[(1,0),(-1,0),(0,1),(0,-1), (2,0),(-2,0),(0,2),(0,-2), (3,0),(-3,0),(0,3),(0,-3)]
h,w,_ = apex_map_on_ade.shape
for ss in shift:
if uu+ss[0] >= 0 and uu+ss[0] < h and vv+ss[1] >= 0 and vv+ss[1] < w:
apex_map[uu+ss[0], vv+ss[1]] = (255,0,0)
apex_map_on_ade[uu+ss[0], vv+ss[1]] = (255,0,0)
apex_map_on_gest[uu+ss[0], vv+ss[1]] = (255,0,0)
# imsave apex and eave_end
if DUMP_IMG:
import random
rid = random.random()
filename_apex_ade = f'apex_map_on_ade_{rid}.jpg'
cv2.imwrite(filename_apex_ade, apex_map_on_ade)
filename_apex_gest = f'apex_map_on_gest_{rid}.jpg'
cv2.imwrite(filename_apex_gest, apex_map_on_gest)
filename_apex_map = f'apex_map_{rid}.jpg'
cv2.imwrite(filename_apex_map, apex_map)
#print(f'{len(vertices)} vertices detected')
# Connectivity
apex_pts = []
apex_pts_idxs = []
for j, v in enumerate(vertices):
apex_pts.append(v['xy'])
apex_pts_idxs.append(j)
apex_pts = np.array(apex_pts)
# Ridge connects two apex points
line_img = np.copy(gest_seg_np) * 0
for edge_class in ['eave', 'ridge', 'rake', 'valley']:
edge_color = np.array(gestalt_color_mapping[edge_class])
mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
edge_color-color_th,
edge_color+color_th),
cv2.MORPH_DILATE, np.ones((11, 11)))
#line_img = np.copy(gest_seg_np) * 0
if mask.sum() > 0:
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
edges = []
for i in range(1, numLabels):
y,x = np.where(labels == i)
xleft_idx = np.argmin(x)
x_left = x[xleft_idx]
y_left = y[xleft_idx]
xright_idx = np.argmax(x)
x_right = x[xright_idx]
y_right = y[xright_idx]
edges.append((x_left, y_left, x_right, y_right))
cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
edges = np.array(edges)
if (len(apex_pts) < 2) or len(edges) <1:
continue
pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
connectivity_mask = pts_to_edges_dist <= edge_th
edge_connects = connectivity_mask.sum(axis=0)
for edge_idx, edgesum in enumerate(edge_connects):
if edgesum>=2:
connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
for a_i, a in enumerate(connected_verts):
for b in connected_verts[a_i+1:]:
connections.append((a, b))
if DUMP_IMG:
filename_edges_map = f'edges_map_{rid}.jpg'
cv2.imwrite(filename_edges_map, line_img)
return vertices, connections
def get_uv_dept_category(vertices, depth, ade_seg):
'''Get the depth of the vertices from the depth image'''
uv = []
for v in vertices:
uv.append(v['xy'])
uv = np.array(uv)
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
vertex_category = ade_seg[(uv_int[:, 1] , uv_int[:, 0])]
target_color = set([(120,120,120), (180, 120, 120), (255,9,224)])
#filter_ind = [i for i, ele in enumerate(vertex_category) if tuple(ele) in target_color]
filter_ind = []
for i, ele in enumerate(vertex_category):
if tuple(ele) in target_color:
filter_ind.append(i)
print(f'retain {len(filter_ind)} idx')
print(vertex_category[filter_ind])
#print(vertices)
#print(filter_ind)
vertices = [vertices[i] for i in filter_ind]
return uv[filter_ind], vertex_depth[filter_ind], vertex_category[filter_ind], vertices
def merge_vertices_3d(vert_edge_per_image, th=0.1):
'''Merge vertices that are close to each other in 3D space and are of same types'''
all_3d_vertices = []
connections_3d = []
all_indexes = []
cur_start = 0
types = []
for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
types += [int(v['type']=='apex') for v in vertices]
all_3d_vertices.append(vertices_3d)
connections_3d+=[(x+cur_start,y+cur_start) for (x,y) in connections]
cur_start+=len(vertices_3d)
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
#print (connections_3d)
distmat = cdist(all_3d_vertices, all_3d_vertices)
types = np.array(types).reshape(-1,1)
same_types = cdist(types, types)
mask_to_merge = (distmat <= th) & (same_types==0)
new_vertices = []
new_connections = []
to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
to_merge_final = defaultdict(list)
for i in range(len(all_3d_vertices)):
for j in to_merge:
if i in j:
to_merge_final[i]+=j
for k, v in to_merge_final.items():
to_merge_final[k] = list(set(v))
already_there = set()
merged = []
for k, v in to_merge_final.items():
if k in already_there:
continue
merged.append(v)
for vv in v:
already_there.add(vv)
old_idx_to_new = {}
count=0
for idxs in merged:
new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
for idx in idxs:
old_idx_to_new[idx] = count
count +=1
#print (connections_3d)
new_vertices=np.array(new_vertices)
#print (connections_3d)
for conn in connections_3d:
new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
if new_con[0] == new_con[1]:
continue
if new_con not in new_connections:
new_connections.append(new_con)
#print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
return new_vertices, new_connections
def prune_not_connected(all_3d_vertices, connections_3d):
'''Prune vertices that are not connected to any other vertex'''
connected = defaultdict(list)
for c in connections_3d:
connected[c[0]].append(c)
connected[c[1]].append(c)
new_indexes = {}
new_verts = []
connected_out = []
for k,v in connected.items():
vert = all_3d_vertices[k]
if tuple(vert) not in new_verts:
new_verts.append(tuple(vert))
new_indexes[k]=len(new_verts) -1
for k,v in connected.items():
for vv in v:
connected_out.append((new_indexes[vv[0]],new_indexes[vv[1]]))
connected_out=list(set(connected_out))
return np.array(new_verts), connected_out
def uv_to_v3d(uv, depth_vert, K, R, t):
# Normalize the uv to the camera intrinsics
xy_local = np.ones((len(uv), 3))
xy_local[:, 0] = (uv[:, 0] - K[0,2]) / K[0,0]
xy_local[:, 1] = (uv[:, 1] - K[1,2]) / K[1,1]
# Get the 3D vertices
vertices_3d_local = depth_vert[...,None] * (xy_local/np.linalg.norm(xy_local, axis=1)[...,None])
world_to_cam = np.eye(4)
world_to_cam[:3, :3] = R
world_to_cam[:3, 3] = t.reshape(-1)
cam_to_world = np.linalg.inv(world_to_cam)
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
return vertices_3d
def delete_one_vert(vertices, vertices_3d, connections, vert_to_del):
i = np.where(np.all(abs(vertices_3d - vert_to_del) < 0.01, axis=1))
#print(i)
#print(len(i[0]))
if len(i[0])==0:
if vertices:
return vertices, vertices_3d, connections
else:
return vertices, vertices_3d, connections
#print('to del idx=', i[0])
idx = i[0]#[0]
if vertices:
vertices = np.delete(vertices, idx)
vertices_3d = np.delete(vertices_3d, idx, axis=0)
conn_to_del = []
for ic, c in enumerate(connections):
if c[0] == idx or c[1] == idx:
conn_to_del.append(ic)
connections = np.delete(connections, (conn_to_del), axis=0)
for ic, c in enumerate(connections):
if c[0] >= idx:
connections[ic] = (connections[ic][0]-1, connections[ic][1])
if c[1] >= idx:
connections[ic] = (connections[ic][0], connections[ic][1]-1)
#print(f'del {len(conn_to_del)} connections')
connections = connections.tolist()
#print(vertices, vertices_3d, connections)
if vertices:
return vertices, vertices_3d, connections
else:
return vertices_3d, connections
def prune_far(all_3d_vertices, connections_3d, prune_dist_thr=3000):
'''Prune vertices that are far away from any the other vertices'''
if (len(all_3d_vertices) < 3) or len(connections_3d) < 1:
return all_3d_vertices, connections_3d
isolated = []
distmat = cdist(all_3d_vertices, all_3d_vertices)
for i, v in enumerate(distmat):
exclude_self = np.array([x for idx,x in enumerate(v) if idx!=i])
#print('excluded:', exclude_self)
#if np.any(exclude_self > prune_dist_thr):
exclude_self = abs(exclude_self)
if min(exclude_self) > prune_dist_thr:
#print('del a pt w/ dist = ', min(exclude_self))
isolated.append(i)
break
while isolated:
isolated_pt = isolated.pop()
#print('isolated:', isolated_pt)
pt_to_del = all_3d_vertices[isolated_pt]
all_3d_vertices, connections_3d = delete_one_vert([], all_3d_vertices, connections_3d, pt_to_del)
if (len(all_3d_vertices) < 3) or len(connections_3d) < 1:
return all_3d_vertices, connections_3d
distmat = cdist(all_3d_vertices, all_3d_vertices)
for i, v in enumerate(distmat):
exclude_self = np.array([x for idx,x in enumerate(v) if idx!=i])
#if np.any(exclude_self > prune_dist_thr):
exclude_self = abs(exclude_self)
if min(exclude_self) > prune_dist_thr:
#print('del a pt w/ dist = ', min(exclude_self))
isolated.append(i)
break
return all_3d_vertices, connections_3d
def predict(entry, visualize=False, prune_dist_thr=600, depth_scale=2.5, ) -> Tuple[np.ndarray, List[int]]:
good_entry = convert_entry_to_human_readable(entry)
points3D = good_entry['points3d']
vert_edge_per_image = {}
for i, (ade, gest, depth, K, R, t) in enumerate(zip(
good_entry['ade20k'],
good_entry['gestalt'],
good_entry['depthcm'],
good_entry['K'],
good_entry['R'],
good_entry['t']
)):
''' entry 0 suggests:
depth_scale = 1
if i==1:
depth_scale = 2.5
elif i==2: # only visualize view 0,1
continue
'''
ade_seg = ade.resize(depth.size)
ade_seg_np = np.array(ade_seg).astype(np.uint8)
gest_seg = gest.resize(depth.size)
gest_seg_np = np.array(gest_seg).astype(np.uint8)
# Metric3D
depth_np = np.array(depth) / depth_scale # / 2.5 # 2.5 is the scale estimation coefficient # don't use 2.5...
#vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 20.)
#vertices, connections = get_vertices_and_edges_from_two_segmentations(ade_seg_np, gest_seg_np, edge_th = 20.)
vertices, connections = get_vertices_and_edges_from_two_segmentations(ade_seg_np, gest_seg_np, edge_th = 50.)
if (len(vertices) < 2) or (len(connections) < 1):
print (f'Not enough vertices ({len(vertices)}) or connections ({len(connections)}) in image {i}')
vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
continue
#uv, depth_vert = get_uv_depth(vertices, depth_np)
sfm_depth_np = get_SfM_depth(points3D, depth_np, gest_seg_np, K, R, t, 5) # Sensitive. 10 is worse than 0 in testset
uv, depth_vert = get_smooth_uv_depth(vertices, depth_np, gest_seg_np, sfm_depth_np)
#uv, depth_vert = get_smooth_uv_depth(vertices, depth_np, gest_seg_np, None)
vertices_3d = uv_to_v3d(uv, depth_vert, K, R, t)
'''
print('before del, ', len(vertices), len(vertices_3d), len(connections))
vert_to_del = np.array([-2807.275, -4999.645, 1284.803])
vertices, vertices_3d, connections = delete_one_vert(vertices, vertices_3d, connections, vert_to_del)
print('after del, ', len(vertices), len(vertices_3d), len(connections))
'''
vert_edge_per_image[i] = vertices, connections, vertices_3d
#all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 3.0) # TODO: 3cm looks too small
all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 30)
#print(f'after merge, {len(all_3d_vertices)} 3d vertices and {len(connections_3d)} 3d connections')
#all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
all_3d_vertices_clean, connections_3d_clean = prune_far(all_3d_vertices, connections_3d, prune_dist_thr=prune_dist_thr)
#all_3d_vertices_clean, connections_3d_clean = all_3d_vertices, connections_3d # don't prune -> cost:2.0
#print(f'after pruning, {len(all_3d_vertices_clean)} 3d clean vertices and {len(connections_3d_clean)} 3d clean connections')
if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
print (f'Not enough vertices or connections in the 3D vertices')
return (good_entry['__key__'], *empty_solution())
if visualize:
print(f"num of est: {len(all_3d_vertices_clean)}, num of gt:{len(good_entry['wf_vertices'])}")
from hoho.viz3d import plot_estimate_and_gt
plot_estimate_and_gt( all_3d_vertices_clean,
connections_3d_clean,
good_entry['wf_vertices'],
good_entry['wf_edges'])
return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean
|