File size: 30,908 Bytes
b601e2b b1dfde5 b601e2b bf7cb47 b601e2b 7631607 b1dfde5 b601e2b cfce8c8 75595e0 b601e2b bac280a b601e2b 17e425a dfed601 17e425a dfed601 7631607 dfed601 7631607 bac280a 7631607 dfed601 564ec8e 17e425a 564ec8e 17e425a 69ebe6d 17e425a 69ebe6d cfce8c8 69ebe6d bc43a94 637e432 2d29c49 bc43a94 2d29c49 69ebe6d bc43a94 69ebe6d bc43a94 69ebe6d 564ec8e cfce8c8 564ec8e dfed601 69ebe6d 17e425a dfed601 7631607 dfed601 17e425a dfed601 bac280a dfed601 cfce8c8 a049df6 42c3c5c d44d9e7 3fc5c6f bac280a 7631607 ecd4866 c2b8485 a049df6 ecd4866 7631607 cfce8c8 094a253 a049df6 7631607 a049df6 cfce8c8 bac280a f6a2ce1 cfce8c8 e510cdf f6a2ce1 6fe8053 2c29df9 f6a2ce1 e510cdf dfed601 f6a2ce1 cfce8c8 f6a2ce1 6fe8053 f6a2ce1 e510cdf f6a2ce1 6fe8053 1ac89a4 6fe8053 1ac89a4 dfed601 d42bebb b1dfde5 d42bebb dfed601 f6a2ce1 cfce8c8 2d29c49 1820e75 f6a2ce1 e510cdf f6a2ce1 e510cdf f6a2ce1 e510cdf f6a2ce1 1820e75 429b3c4 1820e75 1ac89a4 1820e75 564ec8e 1820e75 564ec8e 1820e75 564ec8e 1820e75 564ec8e 1820e75 2d29c49 1820e75 d42bebb 1820e75 429b3c4 f6a2ce1 b601e2b 9eb5a46 c2f2374 23e3936 c2f2374 23e3936 c2f2374 23e3936 c2f2374 23e3936 cfce8c8 8f363f6 c2f2374 cfce8c8 094a253 c2f2374 094a253 c2f2374 6b13967 6fe8053 6b13967 c2f2374 6b13967 6fe8053 6b13967 6fe8053 6b13967 f111e99 cfce8c8 f111e99 5416844 f111e99 c2f2374 3fc5c6f cfce8c8 2469221 3fc5c6f 005ce9a 2469221 bf7cb47 2469221 b41887b 6fe8053 3fc5c6f 005ce9a b41887b cfce8c8 8ba0042 cfce8c8 005ce9a 8ba0042 005ce9a 3fc5c6f 005ce9a 429b3c4 3fc5c6f 429b3c4 8ba0042 3fc5c6f 6fe8053 3fc5c6f c2f2374 b601e2b bac280a 3fc5c6f 6fe8053 753a43d 5416844 b601e2b bac280a d425c00 b601e2b dfed601 cfce8c8 f111e99 69ebe6d dfed601 cfce8c8 d425c00 b601e2b f111e99 b601e2b cfce8c8 bc0da01 9eb5a46 cfce8c8 b601e2b cfce8c8 bc0da01 e5c2be2 cfce8c8 a2b9eb7 6b13967 429b3c4 1820e75 75595e0 cfce8c8 b601e2b d425c00 b601e2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
import io
from PIL import Image as PImage
import numpy as np
from collections import defaultdict
import cv2
from typing import Tuple, List
from scipy.spatial.distance import cdist
from sklearn.cluster import DBSCAN, OPTICS
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
DUMP_IMG = False
if DUMP_IMG:
from scipy.sparse import random
def empty_solution():
'''Return a minimal valid solution, i.e. 2 vertices and 0 edge.'''
return np.zeros((2,3)), []
def convert_entry_to_human_readable(entry):
out = {}
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
for k, v in entry.items():
if k in already_good:
out[k] = v
continue
if k == 'points3d':
out[k] = read_points3D_binary(fid=io.BytesIO(v))
if k == 'cameras':
out[k] = read_cameras_binary(fid=io.BytesIO(v))
if k == 'images':
out[k] = read_images_binary(fid=io.BytesIO(v))
if k in ['ade20k', 'gestalt']:
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
if k == 'depthcm':
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
return out
def get_uv_depth(vertices, depth):
'''Get the depth of the vertices from the depth image'''
uv = []
for v in vertices:
uv.append(v['xy'])
uv = np.array(uv)
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
return uv, vertex_depth
def get_smooth_uv_depth(vertices, depth, gest_seg_np, sfm_depth_np, r=5):
'''Get the depth of the vertices from the depth image'''
uv = []
for v in vertices:
uv.append(v['xy'])
uv = np.array(uv)
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
a = np.clip( uv_int[:, 0], 0, W-1)
b = np.clip( uv_int[:, 1], 0, H-1)
def get_local_depth(x,y, H, W, depth, r=r):
'''return a smooth version of detph in radius r'''
local_depths = []
for i in range(max(0, x - r), min(W, x + r)):
for j in range(max(0, y - r), min(H, y + r)):
if np.sqrt((i - x)**2 + (j - y)**2) <= r:
if sfm_depth_np is not None:
if sfm_depth_np[j, i] != 0:
local_depths.append(sfm_depth_np[j, i])
else:
local_depths.append(depth[j, i])
else:
local_depths.append(depth[j, i])
return local_depths
def get_local_min(x,y, H, W, depth, sfm_depth_np, r=r, PRINT=False):
'''return a smooth version of detph in radius r'''
local_min = 9999999
i_range = range(max(0, x - r), min(W, x + r))
j_range = range(max(0, y - r), min(H, y + r))
for i in i_range:
for j in j_range:
if sfm_depth_np is not None:
if sfm_depth_np[j, i] != 0:
local_min = min(sfm_depth_np[j, i], local_min)
if PRINT: print(f'({j},{i})sfm:', sfm_depth_np[j, i])
else:
local_min = min(depth[j, i], local_min)
else:
local_min = min(depth[j, i], local_min)
return local_min
def get_priotity_local_min(x,y, H, W, depth, sfm_depth_np, r=r):
'''
Search on sfm depth first. Search on depthmap only if no sfm depth
exists at all in the local region.
'''
PRINT = False
r_choices = [5, 10, 20, 40, 75, 200]
for r in r_choices:
yslice = slice(max(0, y - r), min(H, y + r))
xslice = slice(max(0, x - r), min(W, x + r))
local_area = sfm_depth_np[yslice, xslice]
reduced_local_area = local_area[local_area!=0]
if reduced_local_area.size > 0:
break
if reduced_local_area.size > 0:
#print('use sfm')
if PRINT: print(reduced_local_area)
local_min = np.min(reduced_local_area)
return local_min
else:
#print('use both sfm and monocular')
return get_local_min(x,y, H, W, depth, sfm_depth_np, r, PRINT)
def get_local_min_progressive(x,y, H, W, depth, sfm_depth_np, r=r):
'''
If sfm is available in small local region, use it.
Otherwise, search in large region with combined depth
'''
small_r, large_r = 5, 75
PRINT= False
r = small_r
yslice = slice(max(0, y - r), min(H, y + r))
xslice = slice(max(0, x - r), min(W, x + r))
if np.any(sfm_depth_np[yslice, xslice] != 0):
return get_local_min(x,y, H, W, depth, sfm_depth_np, r)
else:
r = large_r
local_min = 9999999
i_range = range(max(0, x - r), min(W, x + r))
j_range = range(max(0, y - r), min(H, y + r))
for i in i_range:
for j in j_range:
if sfm_depth_np is not None:
if sfm_depth_np[j, i] != 0:
local_min = min(sfm_depth_np[j, i], local_min)
if PRINT: print(sfm_depth_np[j, i])
else:
local_min = min(depth[j, i], local_min)
if PRINT: print('dm:', depth[j, i])
else:
local_min = min(depth[j, i], local_min)
if PRINT: print('dm:', depth[j, i])
return local_min
vertex_depth = []
for x,y in zip(a,b):
local_min = get_priotity_local_min(x,y, H, W, depth, sfm_depth_np, r)
vertex_depth.append(local_min)
'''
local_depths = get_local_depth(x,y, H, W, depth, 5)
#local_mean = np.mean(local_depths)
local_mean = np.min(local_depths)
vertex_depth.append(local_mean)
'''
vertex_depth = np.array(vertex_depth)
return uv, vertex_depth
''' Turn on this to speed up if you have numba
from numba import njit, prange
@njit(parallel=True)
def fill_range(u, v, z, dilate_r, c, sfm_depth_np, sfm_color_np, H, W):
for i in prange(max(0, u - dilate_r), min(W, u + dilate_r)):
for j in prange(max(0, v - dilate_r), min(H, v + dilate_r)) :
#checked+=1
existing_z = sfm_depth_np[j, i]
if z > 0:
if (existing_z!=0 and z < existing_z) or (existing_z==0):
sfm_depth_np[j, i] = z
if DUMP_IMG:
sfm_color_np[j, i] = c
return sfm_depth_np, sfm_color_np
'''
def get_SfM_depth(XYZ, rgb, depth_np, gest_seg_np, K, R, t, dilate_r = 5):
'''Project 3D sfm pointcloud to the image plane '''
H, W = depth_np.shape[:2]
sfm_depth_np = np.zeros(depth_np.shape)
sfm_color_np = np.zeros(gest_seg_np.shape)
XYZ1 = np.concatenate((XYZ, np.ones((len(XYZ), 1))), axis=1)
Rt = np.concatenate( (R, t.reshape((3,1))), axis=1)
world_to_cam = K @ Rt
xyz = world_to_cam @ XYZ1.transpose()
xyz = np.transpose(xyz)
valid_idx = ~np.isclose(xyz[:,2], 0, atol=1e-2) & ~np.isnan(xyz[:,0]) & ~np.isnan(xyz[:,1]) & ~np.isnan(xyz[:,2])
xyz = xyz[valid_idx, :]
us, vs, zs = xyz[:,0]/xyz[:,2], xyz[:,1]/xyz[:,2], xyz[:,2]
us = us[~np.isnan(us)]
vs = vs[~np.isnan(vs)]
us = us.astype(np.int32)
vs = vs.astype(np.int32)
for u,v,z,c in zip(us,vs,zs, rgb):
''' Use this insead if you have numba
sfm_depth_np, sfm_color_np = fill_range(u, v, z, dilate_r, c, sfm_depth_np, sfm_color_np, H, W)
'''
i_range = range(max(0, u - dilate_r), min(W, u + dilate_r))
j_range = range(max(0, v - dilate_r), min(H, v + dilate_r))
for i in i_range:
for j in j_range:
#checked+=1
existing_z = sfm_depth_np[j, i]
if z > 0:
if (existing_z!=0 and z < existing_z) or (existing_z==0):
sfm_depth_np[j, i] = z
if DUMP_IMG:
sfm_color_np[j, i] = c
if DUMP_IMG:
filename_sfm_depth = 'sfm_depth.png'
cv2.imwrite(filename_sfm_depth, sfm_depth_np/100)
filename_sfm_color = 'sfm_color.png'
cv2.imwrite(filename_sfm_color, sfm_color_np)
filename_ref_depth = 'ref_depth.png'
cv2.imwrite(filename_ref_depth, depth_np/100)
return sfm_depth_np
def get_vertices_and_edges_from_two_segmentations(ade_seg_np, gest_seg_np, edge_th = 50.0):
'''Get the vertices and edges from the gestalt segmentation mask of the house'''
vertices = []
connections = []
color_th = 10.0
#-------------------------
# combined map from ade
if DUMP_IMG:
ade_color0 = np.array([0,0,0])
ade_mask0 = cv2.inRange(ade_seg_np, ade_color0-0.5, ade_color0+0.5)
ade_color1 = np.array([120,120,120])
ade_mask1 = cv2.inRange(ade_seg_np, ade_color1-0.5, ade_color1+0.5)
ade_color2 = np.array([180,120,120])
ade_mask2 = cv2.inRange(ade_seg_np, ade_color2-0.5, ade_color2+0.5)
ade_color3 = np.array([255,9,224])
ade_mask3 = cv2.inRange(ade_seg_np, ade_color3-0.5, ade_color3+0.5)
ade_mask = cv2.bitwise_or(ade_mask3, ade_mask2)
ade_mask = cv2.bitwise_or(ade_mask1, ade_mask)
apex_map = np.zeros(ade_seg_np.shape)
apex_map_on_ade = ade_seg_np
apex_map_on_gest = gest_seg_np
# Apex
apex_color = np.array(gestalt_color_mapping['apex'])
apex_mask = cv2.inRange(gest_seg_np, apex_color-color_th, apex_color+color_th) # include more pts
#apex_mask = cv2.bitwise_and(apex_mask, ade_mask) # remove pts
if apex_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "apex"}
vertices.append(vert)
if DUMP_IMG:
uu = int(centroids[i][1])
vv = int(centroids[i][0])
# plot a cross
apex_map_on_ade[uu, vv] = (255,255,255)
shift=[(1,0),(-1,0),(0,1),(0,-1), (2,0),(-2,0),(0,2),(0,-2), (3,0),(-3,0),(0,3),(0,-3)]
h,w,_ = apex_map_on_ade.shape
for ss in shift:
if uu+ss[0] >= 0 and uu+ss[0] < h and vv+ss[1] >= 0 and vv+ss[1] < w:
apex_map[uu+ss[0], vv+ss[1]] = (255,255,255)
apex_map_on_ade[uu+ss[0], vv+ss[1]] = (255,255,255)
apex_map_on_gest[uu+ss[0], vv+ss[1]] = (255,255,255)
eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-color_th, eave_end_color+color_th)
if eave_end_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "eave_end_point"}
vertices.append(vert)
if DUMP_IMG:
uu = int(centroids[i][1])
vv = int(centroids[i][0])
# plot a cross
apex_map_on_ade[uu, vv] = (255,0,0)
shift=[(1,0),(-1,0),(0,1),(0,-1), (2,0),(-2,0),(0,2),(0,-2), (3,0),(-3,0),(0,3),(0,-3)]
h,w,_ = apex_map_on_ade.shape
for ss in shift:
if uu+ss[0] >= 0 and uu+ss[0] < h and vv+ss[1] >= 0 and vv+ss[1] < w:
apex_map[uu+ss[0], vv+ss[1]] = (255,0,0)
apex_map_on_ade[uu+ss[0], vv+ss[1]] = (255,0,0)
apex_map_on_gest[uu+ss[0], vv+ss[1]] = (255,0,0)
flashing_end_color = np.array(gestalt_color_mapping['flashing_end_point'])
flashing_end_mask = cv2.inRange(gest_seg_np, flashing_end_color-color_th/2, flashing_end_color+color_th/2) # this color is sensitive
if flashing_end_color.sum() > 0:
output = cv2.connectedComponentsWithStats(flashing_end_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "flashing_end_point"}
vertices.append(vert)
if DUMP_IMG:
uu = int(centroids[i][1])
vv = int(centroids[i][0])
# plot a cross
apex_map_on_ade[uu, vv] = (255,0,0)
shift=[(1,0),(-1,0),(0,1),(0,-1), (2,0),(-2,0),(0,2),(0,-2), (3,0),(-3,0),(0,3),(0,-3)]
h,w,_ = apex_map_on_ade.shape
for ss in shift:
if uu+ss[0] >= 0 and uu+ss[0] < h and vv+ss[1] >= 0 and vv+ss[1] < w:
apex_map[uu+ss[0], vv+ss[1]] = (255,0,0)
apex_map_on_ade[uu+ss[0], vv+ss[1]] = (255,0,0)
apex_map_on_gest[uu+ss[0], vv+ss[1]] = (255,0,0)
''''''
# imsave apex and eave_end
if DUMP_IMG:
import random
rid = random.random()
filename_apex_ade = f'apex_map_on_ade_{rid}.jpg'
cv2.imwrite(filename_apex_ade, apex_map_on_ade)
filename_apex_gest = f'apex_map_on_gest_{rid}.jpg'
cv2.imwrite(filename_apex_gest, apex_map_on_gest)
filename_apex_map = f'apex_map_{rid}.jpg'
cv2.imwrite(filename_apex_map, apex_map)
# Connectivity
apex_pts = []
apex_pts_idxs = []
for j, v in enumerate(vertices):
apex_pts.append(v['xy'])
apex_pts_idxs.append(j)
apex_pts = np.array(apex_pts)
# Turns out connection is not a priority
'''
# Ridge connects two apex points
def Ridge_connects_two_apex_points(gest_seg_np, color_th, apex_pts, edge_th):
conn = []
line_img = np.copy(gest_seg_np) * 0
for edge_class in ['eave', 'ridge', 'rake', 'valley']:
edge_color = np.array(gestalt_color_mapping[edge_class])
mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
edge_color-color_th,
edge_color+color_th),
cv2.MORPH_DILATE, np.ones((11, 11)))
#line_img = np.copy(gest_seg_np) * 0
if mask.sum() > 0:
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
edges = []
for i in range(1, numLabels):
y,x = np.where(labels == i)
xleft_idx = np.argmin(x)
x_left = x[xleft_idx]
y_left = y[xleft_idx]
xright_idx = np.argmax(x)
x_right = x[xright_idx]
y_right = y[xright_idx]
edges.append((x_left, y_left, x_right, y_right))
cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
edges = np.array(edges)
if (len(apex_pts) < 2) or len(edges) <1:
continue
pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
connectivity_mask = pts_to_edges_dist <= edge_th
edge_connects = connectivity_mask.sum(axis=0)
for edge_idx, edgesum in enumerate(edge_connects):
if edgesum>=2:
connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
for a_i, a in enumerate(connected_verts):
for b in connected_verts[a_i+1:]:
conn.append((a, b))
return conn, line_img
connections, line_img = Ridge_connects_two_apex_points(gest_seg_np, color_th, apex_pts, edge_th)
'''
'''
def classifyPairs(apex_pts, apex_pts_idxs, gest_seg_np, apex_mask, eave_end_mask):
conn = []
# Plot all possible connection pixels in one mask
mask = cv2.bitwise_or(apex_mask, eave_end_mask)
#for edge_class in ['eave', 'ridge', 'rake', 'valley', 'step_flashing' ]:#, 'flashing']:
for edge_class in ['eave', 'ridge', 'rake', 'valley', 'step_flashing' , 'flashing']:
edge_color = np.array(gestalt_color_mapping[edge_class])
mask_e = cv2.morphologyEx(cv2.inRange(gest_seg_np,
edge_color-color_th,
edge_color+color_th),
cv2.MORPH_DILATE, np.ones((11, 11)))
mask = cv2.bitwise_or(mask, mask_e)
# try connecting each apir and see if the cost on the mask is too high
def count_on_line_segment(mask, x1, y1, x2, y2, num_points=100):
#points = []
score = 0
#score_vertex = 0
diffx = x2 - x1
diffy = y2 - y1
for t in range(num_points + 1):
t /= num_points
x = x1 + t * diffx
y = y1 + t * diffy
x, y = x.astype(np.int32), y.astype(np.int32)
if mask[y,x] > 0:
score += 1
#if apex_mask[y,x] > 0:
# score_vertex += 1
return score/num_points #, score_vertex/num_points
#points.append((x, y))
#return points
conn_thr = 0.8 # 80% of pixels are connectivity pixels
for p1i in apex_pts_idxs:
for p2i in apex_pts_idxs:
if p1i == p2i:
continue
score = count_on_line_segment(mask, apex_pts[p1i][0], apex_pts[p1i][1], apex_pts[p2i][0], apex_pts[p2i][1], num_points=100)
#print(f'{p1i}, {p2i}, score = {score}')
if score>conn_thr and ((p2i,p1i) not in conn):
conn.append((p1i, p2i))
return conn, mask
connections, line_img = classifyPairs(apex_pts, apex_pts_idxs, gest_seg_np, apex_mask, eave_end_mask)
#print(f'{len(vertices)} vertices: {vertices}')
#print(len(connections), ' connections: ', connections)
if DUMP_IMG:
filename_edges_map = f'edges_map_{rid}.jpg'
if 'line_img' in locals():
cv2.imwrite(filename_edges_map, line_img)
'''
connections = []
return vertices, connections
def merge_vertices_3d(vert_edge_per_image, th=0.1):
'''Merge vertices that are close to each other in 3D space and are of same types'''
all_3d_vertices = []
connections_3d = []
all_indexes = []
cur_start = 0
types = []
for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
types += [int(v['type']=='apex') for v in vertices]
all_3d_vertices.append(vertices_3d)
connections_3d+=[(x+cur_start,y+cur_start) for (x,y) in connections]
cur_start+=len(vertices_3d)
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
distmat = cdist(all_3d_vertices, all_3d_vertices)
types = np.array(types).reshape(-1,1)
same_types = cdist(types, types)
mask_to_merge = (distmat <= th) & (same_types==0)
new_vertices = []
new_connections = []
to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
to_merge_final = defaultdict(list)
for i in range(len(all_3d_vertices)):
for j in to_merge:
if i in j:
to_merge_final[i]+=j
for k, v in to_merge_final.items():
to_merge_final[k] = list(set(v))
already_there = set()
merged = []
for k, v in to_merge_final.items():
if k in already_there:
continue
merged.append(v)
for vv in v:
already_there.add(vv)
old_idx_to_new = {}
count=0
for idxs in merged:
new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
for idx in idxs:
old_idx_to_new[idx] = count
count +=1
new_vertices=np.array(new_vertices)
for conn in connections_3d:
new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
if new_con[0] == new_con[1]:
continue
if new_con not in new_connections:
new_connections.append(new_con)
return new_vertices, new_connections
def prune_not_connected(all_3d_vertices, connections_3d):
'''Prune vertices that are not connected to any other vertex'''
connected = defaultdict(list)
for c in connections_3d:
connected[c[0]].append(c)
connected[c[1]].append(c)
new_indexes = {}
new_verts = []
connected_out = []
for k,v in connected.items():
vert = all_3d_vertices[k]
if tuple(vert) not in new_verts:
new_verts.append(tuple(vert))
new_indexes[k]=len(new_verts) -1
for k,v in connected.items():
for vv in v:
connected_out.append((new_indexes[vv[0]],new_indexes[vv[1]]))
connected_out=list(set(connected_out))
return np.array(new_verts), connected_out
def uv_to_v3d(uv, depth_vert, K, R, t):
# Normalize the uv to the camera intrinsics
xy_local = np.ones((len(uv), 3))
xy_local[:, 0] = (uv[:, 0] - K[0,2]) / K[0,0]
xy_local[:, 1] = (uv[:, 1] - K[1,2]) / K[1,1]
# Get the 3D vertices
vertices_3d_local = depth_vert[...,None] * (xy_local/np.linalg.norm(xy_local, axis=1)[...,None])
world_to_cam = np.eye(4)
world_to_cam[:3, :3] = R
world_to_cam[:3, 3] = t.reshape(-1)
cam_to_world = np.linalg.inv(world_to_cam)
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
return vertices_3d
def delete_one_vert(vertices, vertices_3d, connections, vert_to_del):
i = np.where(np.all(abs(vertices_3d - vert_to_del) < 0.01, axis=1))
if len(i[0])==0:
if vertices:
return vertices, vertices_3d, connections
else:
return vertices, vertices_3d, connections
idx = i[0]#[0]
if vertices:
vertices = np.delete(vertices, idx)
vertices_3d = np.delete(vertices_3d, idx, axis=0)
conn_to_del = []
for ic, c in enumerate(connections):
if c[0] == idx or c[1] == idx:
conn_to_del.append(ic)
connections = np.delete(connections, (conn_to_del), axis=0)
for ic, c in enumerate(connections):
if c[0] >= idx:
connections[ic] = (connections[ic][0]-1, connections[ic][1])
if c[1] >= idx:
connections[ic] = (connections[ic][0], connections[ic][1]-1)
connections = connections.tolist()
if vertices:
return vertices, vertices_3d, connections
else:
return vertices_3d, connections
def prune_far(all_3d_vertices, connections_3d, prune_dist_thr=3000):
'''Prune vertices that are far away from any other vertices'''
if (len(all_3d_vertices) < 3) or len(connections_3d) < 1:
return all_3d_vertices, connections_3d
isolated = []
distmat = cdist(all_3d_vertices, all_3d_vertices)
for i, v in enumerate(distmat):
exclude_self = np.array([x for idx,x in enumerate(v) if idx!=i])
exclude_self = abs(exclude_self)
if min(exclude_self) > prune_dist_thr:
isolated.append(i)
break
while isolated:
isolated_pt = isolated.pop()
#print('isolated:', isolated_pt)
pt_to_del = all_3d_vertices[isolated_pt]
all_3d_vertices, connections_3d = delete_one_vert([], all_3d_vertices, connections_3d, pt_to_del)
if (len(all_3d_vertices) < 3) or len(connections_3d) < 1:
return all_3d_vertices, connections_3d
distmat = cdist(all_3d_vertices, all_3d_vertices)
for i, v in enumerate(distmat):
exclude_self = np.array([x for idx,x in enumerate(v) if idx!=i])
#if np.any(exclude_self > prune_dist_thr):
exclude_self = abs(exclude_self)
if min(exclude_self) > prune_dist_thr:
#print('del a pt w/ dist = ', min(exclude_self))
isolated.append(i)
break
return all_3d_vertices, connections_3d
def prune_tall_short(all_3d_vertices, connections_3d, lowest_z, prune_tall_thr=1000, prune_short_thr=100):
'''Prune vertices that has inpractical z'''
if (len(all_3d_vertices) < 3) or len(connections_3d) < 1:
return all_3d_vertices, connections_3d
isolated = []
for i,v in enumerate(all_3d_vertices):
if v[2]-lowest_z > prune_tall_thr or v[2]-lowest_z < prune_short_thr:
isolated.append(i)
break
while isolated:
isolated_pt = isolated.pop()
#print('isolated:', isolated_pt)
pt_to_del = all_3d_vertices[isolated_pt]
all_3d_vertices, connections_3d = delete_one_vert([], all_3d_vertices, connections_3d, pt_to_del)
if (len(all_3d_vertices) < 3) or len(connections_3d) < 1:
return all_3d_vertices, connections_3d
for i,v in enumerate(all_3d_vertices):
if v[2]-lowest_z > prune_tall_thr or v[2]-lowest_z < prune_short_thr:
isolated.append(i)
break
return all_3d_vertices, connections_3d
def clean_gest(gest_seg_np):
'''
Remove all blobs that are not conencted to the largest blob
'''
bg_color = np.array(gestalt_color_mapping['unclassified'])
bg_mask = cv2.inRange(gest_seg_np, bg_color-10, bg_color+10)
if bg_mask.sum() == 0 or bg_mask.sum() == gest_seg_np.shape[0]*gest_seg_np.shape[1]:
return gest_seg_np
fg_mask = cv2.bitwise_not(bg_mask)
if fg_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(fg_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
sizes = stats[1:, -1] # Get the areas (skip the first entry which is the background)
max_area = max(sizes)
max_label = np.where(sizes == max_area)[0] + 1 # Add 1 to get the actual label
# mask out anything that doesn't belong to the largest component
gest_seg_np[labels != max_label] = bg_color
return gest_seg_np
def clean_PCD(XYZ, rgb):
'''
Remove all points that do not belong to the largest cluster
'''
lowest_z = 0
center_thr = 500
largest_blob_size = 0
largest_blob = 0
# avoid memory issue
if len(XYZ) > 130000 or len(XYZ) < 20:
return XYZ, rgb, lowest_z
# clustering
clust = OPTICS(min_samples=20, max_eps=150, metric='euclidean', cluster_method='dbscan', algorithm='kd_tree').fit(XYZ)
labels = clust.labels_
unique_labels = set(labels)
retain_class_mask = labels == -2
if len(unique_labels) > 40 or len(unique_labels) == 1:
return XYZ, rgb, lowest_z
for k in unique_labels:
class_member_mask = labels == k
blob_size = np.count_nonzero(class_member_mask)
if blob_size>largest_blob_size:
largest_blob_size = blob_size
largest_blob = k
for k in unique_labels:
'''
# -1 is the noise cluster
if k == -1:
retain_class_mask = retain_class_mask | class_member_mask
continue
'''
''' center prior is not valid
pt_k = XYZ[class_member_mask]
Xmean = np.mean(pt_k[:,0])
Ymean = np.mean(pt_k[:,1])
if abs(Xmean) < center_thr and abs(Ymean) < center_thr:
retain_class_mask = retain_class_mask | class_member_mask
'''
if k == largest_blob:
class_member_mask = labels == k
retain_class_mask = retain_class_mask | class_member_mask
#pt_k = XYZ[class_member_mask]
#lowest_z = min(pt_k[:,2])
break
XYZ = XYZ[retain_class_mask]
rgb = rgb[retain_class_mask]
return XYZ, rgb, lowest_z
def predict(entry, visualize=False, prune_dist_thr=600, depth_scale=2.5, ) -> Tuple[np.ndarray, List[int]]:
good_entry = convert_entry_to_human_readable(entry)
points3D = good_entry['points3d']
XYZ = np.stack([p.xyz for p in points3D.values()])
rgb = np.stack([p.rgb for p in points3D.values()])
lowest_z = min(XYZ[:,2])
XYZ, rgb, lowest_z = clean_PCD(XYZ, rgb)
del points3D
vert_edge_per_image = {}
for i, (ade, gest, depth, K, R, t) in enumerate(zip(
good_entry['ade20k'],
good_entry['gestalt'],
good_entry['depthcm'],
good_entry['K'],
good_entry['R'],
good_entry['t']
)):
'''
debug per view
if i!=3:
continue
'''
# (1) 2D processing
ade_seg = ade.resize(depth.size)
ade_seg_np = np.array(ade_seg).astype(np.uint8)
gest_seg = gest.resize(depth.size)
gest_seg_np = np.array(gest_seg).astype(np.uint8)
gest_seg_np = clean_gest(gest_seg_np)
# Metric3D
depth_np = np.array(depth) / depth_scale
vertices, connections = get_vertices_and_edges_from_two_segmentations(ade_seg_np, gest_seg_np, edge_th = 50.)
if (len(vertices) < 1):
vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
continue
# (2) Use depth
sfm_depth_np = get_SfM_depth(XYZ, rgb, depth_np, gest_seg_np, K, R, t, 5)
uv, depth_vert = get_smooth_uv_depth(vertices, depth_np, gest_seg_np, sfm_depth_np, 75)
vertices_3d = uv_to_v3d(uv, depth_vert, K, R, t)
vert_edge_per_image[i] = vertices, connections, vertices_3d
# (3) aggregate info collected from all views:
all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 150)
#all_3d_vertices, connections_3d = prune_tall_short(all_3d_vertices, connections_3d, lowest_z, 1000, 0)
''' This didn't help the final solution
if len(all_3d_vertices)>35:
all_3d_vertices, connections_3d = prune_not_connected(all_3d_vertices, connections_3d)
'''
if len(all_3d_vertices)>10:
all_3d_vertices_clean, connections_3d_clean = prune_far(all_3d_vertices, connections_3d, prune_dist_thr=prune_dist_thr)
else:
all_3d_vertices_clean, connections_3d_clean = all_3d_vertices, connections_3d
connections_3d_clean = []
if (len(all_3d_vertices_clean) < 2):
print (f'Not enough vertices or connections in the 3D vertices')
return (good_entry['__key__'], *empty_solution())
if visualize:
print(f"num of est: {len(all_3d_vertices_clean)}, num of gt:{len(good_entry['wf_vertices'])}")
from hoho.viz3d import plot_estimate_and_gt
plot_estimate_and_gt( all_3d_vertices_clean,
connections_3d_clean,
good_entry['wf_vertices'],
good_entry['wf_edges'])
return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean
|