handcrafted_baseline_submission / handcrafted_solution.py
kcml's picture
improve connection deletion
23e3936
raw
history blame
27.2 kB
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
import io
from PIL import Image as PImage
import numpy as np
from collections import defaultdict
import cv2
from typing import Tuple, List
from scipy.spatial.distance import cdist
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
DUMP_IMG = False
if DUMP_IMG:
from scipy.sparse import random
def empty_solution():
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
return np.zeros((2,3)), [(0, 1)]
def convert_entry_to_human_readable(entry):
out = {}
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
for k, v in entry.items():
if k in already_good:
out[k] = v
continue
if k == 'points3d':
out[k] = read_points3D_binary(fid=io.BytesIO(v))
if k == 'cameras':
out[k] = read_cameras_binary(fid=io.BytesIO(v))
if k == 'images':
out[k] = read_images_binary(fid=io.BytesIO(v))
if k in ['ade20k', 'gestalt']:
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
if k == 'depthcm':
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
return out
def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.0):
'''Get the vertices and edges from the gestalt segmentation mask of the house'''
vertices = []
connections = []
# Apex
apex_color = np.array(gestalt_color_mapping['apex'])
apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
if apex_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "apex"}
vertices.append(vert)
eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
if eave_end_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "eave_end_point"}
vertices.append(vert)
# Connectivity
apex_pts = []
apex_pts_idxs = []
for j, v in enumerate(vertices):
apex_pts.append(v['xy'])
apex_pts_idxs.append(j)
apex_pts = np.array(apex_pts)
# Ridge connects two apex points
for edge_class in ['eave', 'ridge', 'rake', 'valley']:
edge_color = np.array(gestalt_color_mapping[edge_class])
mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
edge_color-0.5,
edge_color+0.5),
cv2.MORPH_DILATE, np.ones((11, 11)))
line_img = np.copy(gest_seg_np) * 0
if mask.sum() > 0:
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
edges = []
for i in range(1, numLabels):
y,x = np.where(labels == i)
xleft_idx = np.argmin(x)
x_left = x[xleft_idx]
y_left = y[xleft_idx]
xright_idx = np.argmax(x)
x_right = x[xright_idx]
y_right = y[xright_idx]
edges.append((x_left, y_left, x_right, y_right))
cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
edges = np.array(edges)
if (len(apex_pts) < 2) or len(edges) <1:
continue
pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
connectivity_mask = pts_to_edges_dist <= edge_th
edge_connects = connectivity_mask.sum(axis=0)
for edge_idx, edgesum in enumerate(edge_connects):
if edgesum>=2:
connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
for a_i, a in enumerate(connected_verts):
for b in connected_verts[a_i+1:]:
connections.append((a, b))
return vertices, connections
def get_uv_depth(vertices, depth):
'''Get the depth of the vertices from the depth image'''
uv = []
for v in vertices:
uv.append(v['xy'])
uv = np.array(uv)
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
return uv, vertex_depth
def get_smooth_uv_depth(vertices, depth, gest_seg_np, sfm_depth_np):
'''Get the depth of the vertices from the depth image'''
#print(f'max depth = {np.max(depth)}')
uv = []
for v in vertices:
uv.append(v['xy'])
uv = np.array(uv)
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
a = np.clip( uv_int[:, 0], 0, W-1)
b = np.clip( uv_int[:, 1], 0, H-1)
def get_local_depth(x,y, H, W, depth, r=5):
'''return a smooth version of detph in radius r'''
local_depths = []
for i in range(max(0, x - r), min(W, x + r)):
for j in range(max(0, y - r), min(H, y + r)):
if np.sqrt((i - x)**2 + (j - y)**2) <= r:
if sfm_depth_np is not None:
if sfm_depth_np[j, i] != 0:
local_depths.append(sfm_depth_np[j, i])
else:
local_depths.append(depth[j, i])
else:
local_depths.append(depth[j, i])
return local_depths
vertex_depth = []
for x,y in zip(a,b):
local_depths = get_local_depth(x,y, H, W, depth, 5)
#print(f'local_depths={local_depths}')
#local_mean = np.mean(local_depths)
local_mean = np.min(local_depths)
vertex_depth.append(local_mean)
vertex_depth = np.array(vertex_depth)
return uv, vertex_depth
'''
from numba import njit, prange
@njit(parallel=True)
def fill_range(u, v, z, dilate_r, c, sfm_depth_np, sfm_color_np, H, W):
for i in prange(max(0, u - dilate_r), min(W, u + dilate_r)):
for j in prange(max(0, v - dilate_r), min(H, v + dilate_r)) :
#checked+=1
existing_z = sfm_depth_np[j, i]
if z > 0:
if (existing_z!=0 and z < existing_z) or (existing_z==0):
sfm_depth_np[j, i] = z
if DUMP_IMG:
sfm_color_np[j, i] = c
return sfm_depth_np, sfm_color_np
'''
def get_SfM_depth(points3D, depth_np, gest_seg_np, K, R, t, dilate_r = 5):
'''Project 3D sfm pointcloud to the image plane '''
H, W = depth_np.shape[:2]
sfm_depth_np = np.zeros(depth_np.shape)
sfm_color_np = np.zeros(gest_seg_np.shape)
#XYZ1 = np.stack([(p.xyz, 1) for p in points3D.values()])
XYZ = np.stack([p.xyz for p in points3D.values()])
rgb = np.stack([p.rgb for p in points3D.values()])
#print('XYZ is ', XYZ.shape)
XYZ1 = np.concatenate((XYZ, np.ones((len(XYZ), 1))), axis=1)
#print('XYZ1 is ', XYZ1.shape)
Rt = np.concatenate( (R, t.reshape((3,1))), axis=1)
world_to_cam = K @ Rt
xyz = world_to_cam @ XYZ1.transpose()
xyz = np.transpose(xyz)
#print('shape of xyz: ', xyz.shape)
valid_idx = ~np.isclose(xyz[:,2], 0, atol=1e-2) & ~np.isnan(xyz[:,0]) & ~np.isnan(xyz[:,1]) & ~np.isnan(xyz[:,2])
xyz = xyz[valid_idx, :]
us, vs, zs = xyz[:,0]/xyz[:,2], xyz[:,1]/xyz[:,2], xyz[:,2]
#print('dim of us uv zs rgb:', len(us), len(vs), len(zs), len(rgb))
us = us[~np.isnan(us)]
vs = vs[~np.isnan(vs)]
us = us.astype(np.int32)
vs = vs.astype(np.int32)
#checked = 0
#print('dim of us uv zs rgb:', len(us), len(vs), len(zs), len(rgb))
for u,v,z,c in zip(us,vs,zs, rgb):
'''
sfm_depth_np, sfm_color_np = fill_range(u, v, z, dilate_r, c, sfm_depth_np, sfm_color_np, H, W)
'''
i_range = range(max(0, u - dilate_r), min(W, u + dilate_r))
j_range = range(max(0, v - dilate_r), min(H, v + dilate_r))
for i in i_range:
for j in j_range:
#checked+=1
existing_z = sfm_depth_np[j, i]
if z > 0:
if (existing_z!=0 and z < existing_z) or (existing_z==0):
sfm_depth_np[j, i] = z
if DUMP_IMG:
sfm_color_np[j, i] = c
#print(f'checked {checked} pts')
if DUMP_IMG:
filename_sfm_depth = 'sfm_depth.png'
cv2.imwrite(filename_sfm_depth, sfm_depth_np/100)
filename_sfm_color = 'sfm_color.png'
cv2.imwrite(filename_sfm_color, sfm_color_np)
filename_ref_depth = 'ref_depth.png'
cv2.imwrite(filename_ref_depth, depth_np/100)
return sfm_depth_np
def get_vertices_and_edges_from_two_segmentations(ade_seg_np, gest_seg_np, edge_th = 50.0):
'''Get the vertices and edges from the gestalt segmentation mask of the house'''
vertices = []
connections = []
color_th = 10.0 # Cost ->2.6
#-------------------------
# combined map from ade
#print(gest_seg_np.shape, ade_seg_np.shape)
ade_color0 = np.array([0,0,0])
ade_mask0 = cv2.inRange(ade_seg_np, ade_color0-0.5, ade_color0+0.5)
ade_color1 = np.array([120,120,120])
ade_mask1 = cv2.inRange(ade_seg_np, ade_color1-0.5, ade_color1+0.5)
ade_color2 = np.array([180,120,120])
ade_mask2 = cv2.inRange(ade_seg_np, ade_color2-0.5, ade_color2+0.5)
ade_color3 = np.array([255,9,224])
ade_mask3 = cv2.inRange(ade_seg_np, ade_color3-0.5, ade_color3+0.5)
ade_mask = cv2.bitwise_or(ade_mask3, ade_mask2)
ade_mask = cv2.bitwise_or(ade_mask1, ade_mask)
#print(ade_mask.any())
apex_map = np.zeros(ade_seg_np.shape)
apex_map_on_ade = ade_seg_np
apex_map_on_gest = gest_seg_np
# Apex
apex_color = np.array(gestalt_color_mapping['apex'])
#print(f'apex_color= {apex_color}')
#apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
apex_mask = cv2.inRange(gest_seg_np, apex_color-color_th, apex_color+color_th) # include more pts
#apex_mask = cv2.bitwise_and(apex_mask, ade_mask) # remove pts
if apex_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "apex"}
vertices.append(vert)
#print(f'centroids[i]={centroids[i]}')
uu = int(centroids[i][1])
vv = int(centroids[i][0])
# plot a cross
apex_map_on_ade[uu, vv] = (255,255,255)
shift=[(1,0),(-1,0),(0,1),(0,-1), (2,0),(-2,0),(0,2),(0,-2), (3,0),(-3,0),(0,3),(0,-3)]
h,w,_ = apex_map_on_ade.shape
for ss in shift:
if uu+ss[0] >= 0 and uu+ss[0] < h and vv+ss[1] >= 0 and vv+ss[1] < w:
apex_map[uu+ss[0], vv+ss[1]] = (255,255,255)
apex_map_on_ade[uu+ss[0], vv+ss[1]] = (255,255,255)
apex_map_on_gest[uu+ss[0], vv+ss[1]] = (255,255,255)
eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
#eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-color_th, eave_end_color+color_th)
#eave_end_mask = cv2.bitwise_and(eave_end_mask, ade_mask)
if eave_end_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "eave_end_point"}
vertices.append(vert)
uu = int(centroids[i][1])
vv = int(centroids[i][0])
# plot a cross
apex_map_on_ade[uu, vv] = (255,0,0)
shift=[(1,0),(-1,0),(0,1),(0,-1), (2,0),(-2,0),(0,2),(0,-2), (3,0),(-3,0),(0,3),(0,-3)]
h,w,_ = apex_map_on_ade.shape
for ss in shift:
if uu+ss[0] >= 0 and uu+ss[0] < h and vv+ss[1] >= 0 and vv+ss[1] < w:
apex_map[uu+ss[0], vv+ss[1]] = (255,0,0)
apex_map_on_ade[uu+ss[0], vv+ss[1]] = (255,0,0)
apex_map_on_gest[uu+ss[0], vv+ss[1]] = (255,0,0)
# imsave apex and eave_end
if DUMP_IMG:
import random
rid = random.random()
filename_apex_ade = f'apex_map_on_ade_{rid}.jpg'
cv2.imwrite(filename_apex_ade, apex_map_on_ade)
filename_apex_gest = f'apex_map_on_gest_{rid}.jpg'
cv2.imwrite(filename_apex_gest, apex_map_on_gest)
filename_apex_map = f'apex_map_{rid}.jpg'
cv2.imwrite(filename_apex_map, apex_map)
#print(f'{len(vertices)} vertices detected')
# Connectivity
apex_pts = []
apex_pts_idxs = []
for j, v in enumerate(vertices):
apex_pts.append(v['xy'])
apex_pts_idxs.append(j)
apex_pts = np.array(apex_pts)
# Ridge connects two apex points
line_img = np.copy(gest_seg_np) * 0
for edge_class in ['eave', 'ridge', 'rake', 'valley']:
edge_color = np.array(gestalt_color_mapping[edge_class])
mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
edge_color-color_th,
edge_color+color_th),
cv2.MORPH_DILATE, np.ones((11, 11)))
#line_img = np.copy(gest_seg_np) * 0
if mask.sum() > 0:
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
edges = []
for i in range(1, numLabels):
y,x = np.where(labels == i)
xleft_idx = np.argmin(x)
x_left = x[xleft_idx]
y_left = y[xleft_idx]
xright_idx = np.argmax(x)
x_right = x[xright_idx]
y_right = y[xright_idx]
edges.append((x_left, y_left, x_right, y_right))
cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
edges = np.array(edges)
if (len(apex_pts) < 2) or len(edges) <1:
continue
pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
connectivity_mask = pts_to_edges_dist <= edge_th
edge_connects = connectivity_mask.sum(axis=0)
for edge_idx, edgesum in enumerate(edge_connects):
if edgesum>=2:
connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
for a_i, a in enumerate(connected_verts):
for b in connected_verts[a_i+1:]:
connections.append((a, b))
if DUMP_IMG:
filename_edges_map = f'edges_map_{rid}.jpg'
cv2.imwrite(filename_edges_map, line_img)
return vertices, connections
def get_uv_dept_category(vertices, depth, ade_seg):
'''Get the depth of the vertices from the depth image'''
uv = []
for v in vertices:
uv.append(v['xy'])
uv = np.array(uv)
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
vertex_category = ade_seg[(uv_int[:, 1] , uv_int[:, 0])]
target_color = set([(120,120,120), (180, 120, 120), (255,9,224)])
#filter_ind = [i for i, ele in enumerate(vertex_category) if tuple(ele) in target_color]
filter_ind = []
for i, ele in enumerate(vertex_category):
if tuple(ele) in target_color:
filter_ind.append(i)
print(f'retain {len(filter_ind)} idx')
print(vertex_category[filter_ind])
#print(vertices)
#print(filter_ind)
vertices = [vertices[i] for i in filter_ind]
return uv[filter_ind], vertex_depth[filter_ind], vertex_category[filter_ind], vertices
def merge_vertices_3d(vert_edge_per_image, th=0.1):
'''Merge vertices that are close to each other in 3D space and are of same types'''
all_3d_vertices = []
connections_3d = []
all_indexes = []
cur_start = 0
types = []
for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
types += [int(v['type']=='apex') for v in vertices]
all_3d_vertices.append(vertices_3d)
connections_3d+=[(x+cur_start,y+cur_start) for (x,y) in connections]
cur_start+=len(vertices_3d)
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
#print (connections_3d)
distmat = cdist(all_3d_vertices, all_3d_vertices)
types = np.array(types).reshape(-1,1)
same_types = cdist(types, types)
mask_to_merge = (distmat <= th) & (same_types==0)
new_vertices = []
new_connections = []
to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
to_merge_final = defaultdict(list)
for i in range(len(all_3d_vertices)):
for j in to_merge:
if i in j:
to_merge_final[i]+=j
for k, v in to_merge_final.items():
to_merge_final[k] = list(set(v))
already_there = set()
merged = []
for k, v in to_merge_final.items():
if k in already_there:
continue
merged.append(v)
for vv in v:
already_there.add(vv)
old_idx_to_new = {}
count=0
for idxs in merged:
new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
for idx in idxs:
old_idx_to_new[idx] = count
count +=1
#print (connections_3d)
new_vertices=np.array(new_vertices)
#print (connections_3d)
for conn in connections_3d:
new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
if new_con[0] == new_con[1]:
continue
if new_con not in new_connections:
new_connections.append(new_con)
#print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
return new_vertices, new_connections
def prune_not_connected(all_3d_vertices, connections_3d):
'''Prune vertices that are not connected to any other vertex'''
connected = defaultdict(list)
for c in connections_3d:
connected[c[0]].append(c)
connected[c[1]].append(c)
new_indexes = {}
new_verts = []
connected_out = []
for k,v in connected.items():
vert = all_3d_vertices[k]
if tuple(vert) not in new_verts:
new_verts.append(tuple(vert))
new_indexes[k]=len(new_verts) -1
for k,v in connected.items():
for vv in v:
connected_out.append((new_indexes[vv[0]],new_indexes[vv[1]]))
connected_out=list(set(connected_out))
return np.array(new_verts), connected_out
def uv_to_v3d(uv, depth_vert, K, R, t):
# Normalize the uv to the camera intrinsics
xy_local = np.ones((len(uv), 3))
xy_local[:, 0] = (uv[:, 0] - K[0,2]) / K[0,0]
xy_local[:, 1] = (uv[:, 1] - K[1,2]) / K[1,1]
# Get the 3D vertices
vertices_3d_local = depth_vert[...,None] * (xy_local/np.linalg.norm(xy_local, axis=1)[...,None])
world_to_cam = np.eye(4)
world_to_cam[:3, :3] = R
world_to_cam[:3, 3] = t.reshape(-1)
cam_to_world = np.linalg.inv(world_to_cam)
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
return vertices_3d
def delete_one_vert(vertices, vertices_3d, connections, vert_to_del):
i = np.where(np.all(abs(vertices_3d - vert_to_del) < 0.01, axis=1))
#print(i)
#print(len(i[0]))
if len(i[0])==0:
if vertices:
return vertices, vertices_3d, connections
else:
return vertices, vertices_3d, connections
#print('to del idx=', i[0])
idx = i[0]#[0]
if vertices:
vertices = np.delete(vertices, idx)
vertices_3d = np.delete(vertices_3d, idx, axis=0)
conn_to_del = []
for ic, c in enumerate(connections):
if c[0] == idx or c[1] == idx:
conn_to_del.append(ic)
connections = np.delete(connections, (conn_to_del), axis=0)
for ic, c in enumerate(connections):
if c[0] >= idx:
connections[ic] = (connections[ic][0]-1, connections[ic][1])
if c[1] >= idx:
connections[ic] = (connections[ic][0], connections[ic][1]-1)
#print(f'del {len(conn_to_del)} connections')
connections = connections.tolist()
#print(vertices, vertices_3d, connections)
if vertices:
return vertices, vertices_3d, connections
else:
return vertices_3d, connections
def prune_far(all_3d_vertices, connections_3d, prune_dist_thr=3000):
'''Prune vertices that are far away from any the other vertices'''
if (len(all_3d_vertices) < 3) or len(connections_3d) < 1:
return all_3d_vertices, connections_3d
isolated = []
distmat = cdist(all_3d_vertices, all_3d_vertices)
for i, v in enumerate(distmat):
exclude_self = np.array([x for idx,x in enumerate(v) if idx!=i])
#print('excluded:', exclude_self)
#if np.any(exclude_self > prune_dist_thr):
exclude_self = abs(exclude_self)
if min(exclude_self) > prune_dist_thr:
#print('del a pt w/ dist = ', min(exclude_self))
isolated.append(i)
break
while isolated:
isolated_pt = isolated.pop()
#print('isolated:', isolated_pt)
pt_to_del = all_3d_vertices[isolated_pt]
all_3d_vertices, connections_3d = delete_one_vert([], all_3d_vertices, connections_3d, pt_to_del)
if (len(all_3d_vertices) < 3) or len(connections_3d) < 1:
return all_3d_vertices, connections_3d
distmat = cdist(all_3d_vertices, all_3d_vertices)
for i, v in enumerate(distmat):
exclude_self = np.array([x for idx,x in enumerate(v) if idx!=i])
#if np.any(exclude_self > prune_dist_thr):
exclude_self = abs(exclude_self)
if min(exclude_self) > prune_dist_thr:
#print('del a pt w/ dist = ', min(exclude_self))
isolated.append(i)
break
return all_3d_vertices, connections_3d
def predict(entry, visualize=False, prune_dist_thr=600, depth_scale=2.5, ) -> Tuple[np.ndarray, List[int]]:
good_entry = convert_entry_to_human_readable(entry)
points3D = good_entry['points3d']
vert_edge_per_image = {}
for i, (ade, gest, depth, K, R, t) in enumerate(zip(
good_entry['ade20k'],
good_entry['gestalt'],
good_entry['depthcm'],
good_entry['K'],
good_entry['R'],
good_entry['t']
)):
''' entry 0 suggests:
depth_scale = 1
if i==1:
depth_scale = 2.5
elif i==2: # only visualize view 0,1
continue
'''
ade_seg = ade.resize(depth.size)
ade_seg_np = np.array(ade_seg).astype(np.uint8)
gest_seg = gest.resize(depth.size)
gest_seg_np = np.array(gest_seg).astype(np.uint8)
# Metric3D
depth_np = np.array(depth) / depth_scale # / 2.5 # 2.5 is the scale estimation coefficient # don't use 2.5...
#vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 20.)
#vertices, connections = get_vertices_and_edges_from_two_segmentations(ade_seg_np, gest_seg_np, edge_th = 20.)
vertices, connections = get_vertices_and_edges_from_two_segmentations(ade_seg_np, gest_seg_np, edge_th = 50.)
if (len(vertices) < 2) or (len(connections) < 1):
print (f'Not enough vertices ({len(vertices)}) or connections ({len(connections)}) in image {i}')
vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
continue
#uv, depth_vert = get_uv_depth(vertices, depth_np)
sfm_depth_np = get_SfM_depth(points3D, depth_np, gest_seg_np, K, R, t, 5) # Sensitive. 10 is worse than 0 in testset
uv, depth_vert = get_smooth_uv_depth(vertices, depth_np, gest_seg_np, sfm_depth_np)
#uv, depth_vert = get_smooth_uv_depth(vertices, depth_np, gest_seg_np, None)
vertices_3d = uv_to_v3d(uv, depth_vert, K, R, t)
'''
print('before del, ', len(vertices), len(vertices_3d), len(connections))
vert_to_del = np.array([-2807.275, -4999.645, 1284.803])
vertices, vertices_3d, connections = delete_one_vert(vertices, vertices_3d, connections, vert_to_del)
print('after del, ', len(vertices), len(vertices_3d), len(connections))
'''
vert_edge_per_image[i] = vertices, connections, vertices_3d
#all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 3.0) # TODO: 3cm looks too small
all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 30)
#print(f'after merge, {len(all_3d_vertices)} 3d vertices and {len(connections_3d)} 3d connections')
#all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
all_3d_vertices_clean, connections_3d_clean = prune_far(all_3d_vertices, connections_3d, prune_dist_thr=prune_dist_thr)
#all_3d_vertices_clean, connections_3d_clean = all_3d_vertices, connections_3d # don't prune -> cost:2.0
#print(f'after pruning, {len(all_3d_vertices_clean)} 3d clean vertices and {len(connections_3d_clean)} 3d clean connections')
if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
print (f'Not enough vertices or connections in the 3D vertices')
return (good_entry['__key__'], *empty_solution())
if visualize:
print(f"num of est: {len(all_3d_vertices_clean)}, num of gt:{len(good_entry['wf_vertices'])}")
from hoho.viz3d import plot_estimate_and_gt
plot_estimate_and_gt( all_3d_vertices_clean,
connections_3d_clean,
good_entry['wf_vertices'],
good_entry['wf_edges'])
return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean