Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0099
  • Accuracy: {'accuracy': 0.888}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3473 {'accuracy': 0.874}
0.4088 2.0 500 0.5087 {'accuracy': 0.873}
0.4088 3.0 750 0.6246 {'accuracy': 0.866}
0.2221 4.0 1000 0.7013 {'accuracy': 0.887}
0.2221 5.0 1250 0.7331 {'accuracy': 0.876}
0.1013 6.0 1500 0.8383 {'accuracy': 0.88}
0.1013 7.0 1750 0.8908 {'accuracy': 0.886}
0.0269 8.0 2000 1.0219 {'accuracy': 0.884}
0.0269 9.0 2250 1.0187 {'accuracy': 0.878}
0.0102 10.0 2500 1.0099 {'accuracy': 0.888}

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
67.6M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for kedar16/distilbert-base-uncased-lora-text-classification

Finetuned
(6415)
this model