Edit model card

sst-bert-base-uncased

This model is a fine-tuned version of bert-base-uncased on the sst dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0201
  • Mse: 0.0201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mse
0.0428 1.0 534 0.0218 0.0218
0.0169 2.0 1068 0.0216 0.0216
0.0096 3.0 1602 0.0231 0.0232
0.0066 4.0 2136 0.0222 0.0223
0.0046 5.0 2670 0.0220 0.0220
0.0035 6.0 3204 0.0209 0.0210
0.0029 7.0 3738 0.0226 0.0227
0.0025 8.0 4272 0.0211 0.0211
0.0023 9.0 4806 0.0207 0.0208
0.002 10.0 5340 0.0218 0.0218
0.0017 11.0 5874 0.0201 0.0202
0.0015 12.0 6408 0.0212 0.0212
0.0014 13.0 6942 0.0202 0.0202
0.0012 14.0 7476 0.0205 0.0206
0.0009 15.0 8010 0.0203 0.0203
0.0008 16.0 8544 0.0202 0.0202
0.0007 17.0 9078 0.0206 0.0207
0.0006 18.0 9612 0.0200 0.0200
0.0005 19.0 10146 0.0201 0.0201
0.0005 20.0 10680 0.0201 0.0201

Framework versions

  • Transformers 4.37.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.15.0
  • Tokenizers 0.15.2
Downloads last month
9
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kennethge123/sst-bert-base-uncased

Finetuned
(2110)
this model

Dataset used to train kennethge123/sst-bert-base-uncased