bbc-to-ind-nmt-v7 / README.md
kepinsam's picture
End of training
47de9e1 verified
|
raw
history blame
2.59 kB
metadata
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
  - generated_from_trainer
datasets:
  - nusatranslation_mt
metrics:
  - sacrebleu
model-index:
  - name: bbc-to-ind-nmt-v7
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: nusatranslation_mt
          type: nusatranslation_mt
          config: nusatranslation_mt_btk_ind_source
          split: test
          args: nusatranslation_mt_btk_ind_source
        metrics:
          - name: Sacrebleu
            type: sacrebleu
            value: 38.1839

bbc-to-ind-nmt-v7

This model is a fine-tuned version of facebook/nllb-200-distilled-600M on the nusatranslation_mt dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1540
  • Sacrebleu: 38.1839
  • Gen Len: 37.279

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Sacrebleu Gen Len
5.0915 1.0 413 2.2849 27.9598 38.462
1.483 2.0 826 1.2052 35.2398 37.6305
1.0733 3.0 1239 1.1450 36.4283 37.133
0.9415 4.0 1652 1.1232 37.7264 37.198
0.8558 5.0 2065 1.1231 37.9682 37.399
0.7867 6.0 2478 1.1286 38.272 37.4305
0.736 7.0 2891 1.1343 38.0986 37.31
0.696 8.0 3304 1.1416 38.2159 37.219
0.6674 9.0 3717 1.1494 38.2257 37.307
0.6488 10.0 4130 1.1540 38.1839 37.279

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1