Edit model card

Model Overview

DeBERTaV3 encoder networks are a set of transformer encoder models published by Microsoft. DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder.

Weights are released under the MIT License. Keras model code is released under the Apache 2 License.

Links

Installation

Keras and KerasHub can be installed with:

pip install -U -q keras-hub
pip install -U -q keras>=3

Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the Keras Getting Started page.

Presets

The following model checkpoints are provided by the Keras team. Full code examples for each are available below.

Preset Name Parameters Description
deberta_v3_extra_small_en 70.68M 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText.
deberta_v3_small_en 141.30M 6-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText.
deberta_v3_base_en 183.83M 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText.
deberta_v3_large_en 434.01M 24-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText.
deberta_v3_base_multi 278.22M 12-layer DeBERTaV3 model where case is maintained. Trained on the 2.5TB multilingual CC100 dataset.

Prompts

DeBERTa's main use as a classifier takes in raw text that is labelled by the class it belongs to. In practice this can look like this:

features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]

Example Usage

import keras
import keras_hub
import numpy as np

Raw string data.

features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]

# Pretrained classifier.
classifier = keras_hub.models.DebertaV3Classifier.from_preset(
    "deberta_v3_large_en",
    num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)

# Re-compile (e.g., with a new learning rate).
classifier.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.Adam(5e-5),
    jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)

Preprocessed integer data.

features = {
    "token_ids": np.ones(shape=(2, 12), dtype="int32"),
    "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]

# Pretrained classifier without preprocessing.
classifier = keras_hub.models.DebertaV3Classifier.from_preset(
    "deberta_v3_large_en",
    num_classes=4,
    preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)

Example Usage with Hugging Face URI

import keras
import keras_hub
import numpy as np

Raw string data.

features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]

# Pretrained classifier.
classifier = keras_hub.models.DebertaV3Classifier.from_preset(
    "hf://keras/deberta_v3_large_en",
    num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)

# Re-compile (e.g., with a new learning rate).
classifier.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.Adam(5e-5),
    jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)

Preprocessed integer data.

features = {
    "token_ids": np.ones(shape=(2, 12), dtype="int32"),
    "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]

# Pretrained classifier without preprocessing.
classifier = keras_hub.models.DebertaV3Classifier.from_preset(
    "hf://keras/deberta_v3_large_en",
    num_classes=4,
    preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
Downloads last month
32
Inference Examples
Inference API (serverless) does not yet support keras-hub models for this pipeline type.

Collection including keras/deberta_v3_large_en