|
--- |
|
library_name: keras-hub |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- text-classification |
|
pipeline_tag: text-classification |
|
--- |
|
## Model Overview |
|
DistilBert is a set of language models published by HuggingFace. They are efficient, distilled version of BERT, and are intended for classification and embedding of text, not for text-generation. See the model card below for benchmarks, data sources, and intended use cases. |
|
|
|
Weights and Keras model code are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE). |
|
|
|
## Links |
|
|
|
* [DistilBert Quickstart Notebook](https://www.kaggle.com/code/matthewdwatson/distilbert-quickstart) |
|
* [DistilBert API Documentation](https://keras.io/api/keras_hub/models/distil_bert/) |
|
* [DistilBert Model Card](https://huggingface.co/distilbert/distilbert-base-uncased) |
|
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/) |
|
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/) |
|
|
|
## Installation |
|
|
|
Keras and KerasHub can be installed with: |
|
|
|
``` |
|
pip install -U -q keras-hub |
|
pip install -U -q keras>=3 |
|
``` |
|
|
|
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. |
|
|
|
## Presets |
|
|
|
The following model checkpoints are provided by the Keras team. Full code examples for each are available below. |
|
|
|
| Preset name | Parameters | Description | |
|
|-----------------------------|------------|--------------------------------------------------------| |
|
| distil_bert_base_en_uncased | 66.36M | 6-layer model where all input is lowercased. | |
|
| distil_bert_base_en | 65.19M | 6-layer model where case is maintained. | |
|
| distil_bert_base_multi | 134.73M | 6-layer multi-linguage model where case is maintained. | |
|
|
|
## Example Usage |
|
```python |
|
import keras |
|
import keras_hub |
|
import numpy as np |
|
``` |
|
|
|
Raw string data. |
|
```python |
|
features = ["The quick brown fox jumped.", "I forgot my homework."] |
|
labels = [0, 3] |
|
|
|
# Use a shorter sequence length. |
|
preprocessor = keras_hub.models.DistilBertPreprocessor.from_preset( |
|
"distil_bert_base_en_uncased", |
|
sequence_length=128, |
|
) |
|
# Pretrained classifier. |
|
classifier = keras_hub.models.DistilBertClassifier.from_preset( |
|
"distil_bert_base_en_uncased", |
|
num_classes=4, |
|
preprocessor=preprocessor, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
|
|
# Re-compile (e.g., with a new learning rate) |
|
classifier.compile( |
|
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
|
optimizer=keras.optimizers.Adam(5e-5), |
|
jit_compile=True, |
|
) |
|
# Access backbone programmatically (e.g., to change `trainable`). |
|
classifier.backbone.trainable = False |
|
# Fit again. |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |
|
|
|
Preprocessed integer data. |
|
```python |
|
features = { |
|
"token_ids": np.ones(shape=(2, 12), dtype="int32"), |
|
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2) |
|
} |
|
labels = [0, 3] |
|
|
|
# Pretrained classifier without preprocessing. |
|
classifier = keras_hub.models.DistilBertClassifier.from_preset( |
|
"distil_bert_base_en_uncased", |
|
num_classes=4, |
|
preprocessor=None, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |
|
|
|
## Example Usage with Hugging Face URI |
|
|
|
```python |
|
import keras |
|
import keras_hub |
|
import numpy as np |
|
``` |
|
|
|
Raw string data. |
|
```python |
|
features = ["The quick brown fox jumped.", "I forgot my homework."] |
|
labels = [0, 3] |
|
|
|
# Use a shorter sequence length. |
|
preprocessor = keras_hub.models.DistilBertPreprocessor.from_preset( |
|
"hf://keras/distil_bert_base_en_uncased", |
|
sequence_length=128, |
|
) |
|
# Pretrained classifier. |
|
classifier = keras_hub.models.DistilBertClassifier.from_preset( |
|
"hf://keras/distil_bert_base_en_uncased", |
|
num_classes=4, |
|
preprocessor=preprocessor, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
|
|
# Re-compile (e.g., with a new learning rate) |
|
classifier.compile( |
|
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
|
optimizer=keras.optimizers.Adam(5e-5), |
|
jit_compile=True, |
|
) |
|
# Access backbone programmatically (e.g., to change `trainable`). |
|
classifier.backbone.trainable = False |
|
# Fit again. |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |
|
|
|
Preprocessed integer data. |
|
```python |
|
features = { |
|
"token_ids": np.ones(shape=(2, 12), dtype="int32"), |
|
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2) |
|
} |
|
labels = [0, 3] |
|
|
|
# Pretrained classifier without preprocessing. |
|
classifier = keras_hub.models.DistilBertClassifier.from_preset( |
|
"hf://keras/distil_bert_base_en_uncased", |
|
num_classes=4, |
|
preprocessor=None, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |