File size: 4,402 Bytes
fb39ad6
 
148ea95
 
 
 
 
 
ecf35c4
fb39ad6
5495bf4
44ea95f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a3ab3
44ea95f
 
 
 
 
 
 
 
 
 
 
 
 
dedf948
44ea95f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5495bf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
library_name: keras-hub
license: apache-2.0
language:
- en
tags:
- text-classification
- keras
pipeline_tag: text-classification
---
### Model Overview
FNet is a set of language models published by Google as part of the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824). FNet replaces the self-attention of BERT with an unparameterized fourier transform, dramatically lowering the number of trainable parameters in the model. FNet achieves training at 92-97% accuracy of BERT counterparts on GLUE benchmark, with faster training and much smaller saved checkpoints.

Weights and Keras model code are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).

## Links

* [FNet Quickstart Notebook](https://www.kaggle.com/code/matthewdwatson/fnet-quickstart/)
* [FNet API Documentation](https://keras.io/api/keras_hub/models/f_net/)
* [FNet Model Card](https://github.com/google-research/google-research/blob/master/f_net/README.md)
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)

## Installation

Keras and KerasHub can be installed with:

```
pip install -U -q keras-hub
pip install -U -q keras>=3
```

Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.

## Presets

The following model checkpoints are provided by the Keras team. Full code examples for each are available below.

| Preset name    | Parameters | Description                                   |
|----------------|------------|-----------------------------------------------|
| `f_net_base_en`  | 82.86M     | 12-layer FNet model where case is maintained. |
| `f_net_large_en` | 236.95M    | 24-layer FNet model where case is maintained. |

## Example Usage
```python
import keras
import keras_hub
import numpy as np
```

Raw string data.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]

# Pretrained classifier.
classifier = keras_hub.models.FNetClassifier.from_preset(
    "f_net_base_en",
    num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)

# Re-compile (e.g., with a new learning rate).
classifier.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.Adam(5e-5),
    jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
```

Preprocessed integer data.
```python
features = {
    "token_ids": np.ones(shape=(2, 12), dtype="int32"),
    "segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]

# Pretrained classifier without preprocessing.
classifier = keras_hub.models.FNetClassifier.from_preset(
    "f_net_base_en",
    num_classes=4,
    preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
```

## Example Usage with Hugging Face URI

```python
import keras
import keras_hub
import numpy as np
```

Raw string data.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]

# Pretrained classifier.
classifier = keras_hub.models.FNetClassifier.from_preset(
    "f_net_base_en",
    num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)

# Re-compile (e.g., with a new learning rate).
classifier.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.Adam(5e-5),
    jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
```

Preprocessed integer data.
```python
features = {
    "token_ids": np.ones(shape=(2, 12), dtype="int32"),
    "segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]

# Pretrained classifier without preprocessing.
classifier = keras_hub.models.FNetClassifier.from_preset(
    "f_net_base_en",
    num_classes=4,
    preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
```