File size: 4,402 Bytes
fb39ad6 148ea95 ecf35c4 fb39ad6 5495bf4 44ea95f 80a3ab3 44ea95f dedf948 44ea95f 5495bf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
library_name: keras-hub
license: apache-2.0
language:
- en
tags:
- text-classification
- keras
pipeline_tag: text-classification
---
### Model Overview
FNet is a set of language models published by Google as part of the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824). FNet replaces the self-attention of BERT with an unparameterized fourier transform, dramatically lowering the number of trainable parameters in the model. FNet achieves training at 92-97% accuracy of BERT counterparts on GLUE benchmark, with faster training and much smaller saved checkpoints.
Weights and Keras model code are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
## Links
* [FNet Quickstart Notebook](https://www.kaggle.com/code/matthewdwatson/fnet-quickstart/)
* [FNet API Documentation](https://keras.io/api/keras_hub/models/f_net/)
* [FNet Model Card](https://github.com/google-research/google-research/blob/master/f_net/README.md)
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
## Installation
Keras and KerasHub can be installed with:
```
pip install -U -q keras-hub
pip install -U -q keras>=3
```
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
## Presets
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
| Preset name | Parameters | Description |
|----------------|------------|-----------------------------------------------|
| `f_net_base_en` | 82.86M | 12-layer FNet model where case is maintained. |
| `f_net_large_en` | 236.95M | 24-layer FNet model where case is maintained. |
## Example Usage
```python
import keras
import keras_hub
import numpy as np
```
Raw string data.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
# Pretrained classifier.
classifier = keras_hub.models.FNetClassifier.from_preset(
"f_net_base_en",
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)
# Re-compile (e.g., with a new learning rate).
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
```
Preprocessed integer data.
```python
features = {
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
"segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]
# Pretrained classifier without preprocessing.
classifier = keras_hub.models.FNetClassifier.from_preset(
"f_net_base_en",
num_classes=4,
preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
```
## Example Usage with Hugging Face URI
```python
import keras
import keras_hub
import numpy as np
```
Raw string data.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
# Pretrained classifier.
classifier = keras_hub.models.FNetClassifier.from_preset(
"f_net_base_en",
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)
# Re-compile (e.g., with a new learning rate).
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
```
Preprocessed integer data.
```python
features = {
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
"segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]
# Pretrained classifier without preprocessing.
classifier = keras_hub.models.FNetClassifier.from_preset(
"f_net_base_en",
num_classes=4,
preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
```
|