|
import os |
|
import time |
|
import pdb |
|
import re |
|
|
|
import gradio as gr |
|
import spaces |
|
import numpy as np |
|
import sys |
|
import subprocess |
|
|
|
from huggingface_hub import snapshot_download |
|
import requests |
|
|
|
import argparse |
|
import os |
|
from omegaconf import OmegaConf |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
import glob |
|
import pickle |
|
from tqdm import tqdm |
|
import copy |
|
from argparse import Namespace |
|
import shutil |
|
import gdown |
|
import imageio |
|
import ffmpeg |
|
from moviepy.editor import * |
|
|
|
|
|
ProjectDir = os.path.abspath(os.path.dirname(__file__)) |
|
CheckpointsDir = os.path.join(ProjectDir, "models") |
|
|
|
def print_directory_contents(path): |
|
for child in os.listdir(path): |
|
child_path = os.path.join(path, child) |
|
if os.path.isdir(child_path): |
|
print(child_path) |
|
|
|
def download_model(): |
|
if not os.path.exists(CheckpointsDir): |
|
os.makedirs(CheckpointsDir) |
|
print("Checkpoint Not Downloaded, start downloading...") |
|
tic = time.time() |
|
snapshot_download( |
|
repo_id="TMElyralab/MuseTalk", |
|
local_dir=CheckpointsDir, |
|
max_workers=8, |
|
local_dir_use_symlinks=True, |
|
force_download=True, resume_download=False |
|
) |
|
|
|
os.makedirs(f"{CheckpointsDir}/sd-vae-ft-mse/") |
|
snapshot_download( |
|
repo_id="stabilityai/sd-vae-ft-mse", |
|
local_dir=CheckpointsDir+'/sd-vae-ft-mse', |
|
max_workers=8, |
|
local_dir_use_symlinks=True, |
|
force_download=True, resume_download=False |
|
) |
|
|
|
os.makedirs(f"{CheckpointsDir}/dwpose/") |
|
snapshot_download( |
|
repo_id="yzd-v/DWPose", |
|
local_dir=CheckpointsDir+'/dwpose', |
|
max_workers=8, |
|
local_dir_use_symlinks=True, |
|
force_download=True, resume_download=False |
|
) |
|
|
|
url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt" |
|
response = requests.get(url) |
|
|
|
if response.status_code == 200: |
|
|
|
file_path = f"{CheckpointsDir}/whisper/tiny.pt" |
|
os.makedirs(f"{CheckpointsDir}/whisper/") |
|
|
|
with open(file_path, "wb") as f: |
|
f.write(response.content) |
|
else: |
|
print(f"请求失败,状态码:{response.status_code}") |
|
|
|
url = "https://drive.google.com/uc?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812" |
|
os.makedirs(f"{CheckpointsDir}/face-parse-bisent/") |
|
file_path = f"{CheckpointsDir}/face-parse-bisent/79999_iter.pth" |
|
gdown.download(url, file_path, quiet=False) |
|
|
|
url = "https://download.pytorch.org/models/resnet18-5c106cde.pth" |
|
response = requests.get(url) |
|
|
|
if response.status_code == 200: |
|
|
|
file_path = f"{CheckpointsDir}/face-parse-bisent/resnet18-5c106cde.pth" |
|
|
|
with open(file_path, "wb") as f: |
|
f.write(response.content) |
|
else: |
|
print(f"请求失败,状态码:{response.status_code}") |
|
|
|
|
|
toc = time.time() |
|
|
|
print(f"download cost {toc-tic} seconds") |
|
print_directory_contents(CheckpointsDir) |
|
|
|
else: |
|
print("Already download the model.") |
|
|
|
|
|
|
|
|
|
|
|
download_model() |
|
|
|
|
|
from musetalk.utils.utils import get_file_type,get_video_fps,datagen |
|
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder,get_bbox_range |
|
from musetalk.utils.blending import get_image |
|
from musetalk.utils.utils import load_all_model |
|
|
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=600) |
|
@torch.no_grad() |
|
def inference(audio_path,video_path,bbox_shift,progress=gr.Progress(track_tqdm=True)): |
|
args_dict={"result_dir":'./results/output', "fps":25, "batch_size":8, "output_vid_name":'', "use_saved_coord":False} |
|
args = Namespace(**args_dict) |
|
|
|
input_basename = os.path.basename(video_path).split('.')[0] |
|
audio_basename = os.path.basename(audio_path).split('.')[0] |
|
output_basename = f"{input_basename}_{audio_basename}" |
|
result_img_save_path = os.path.join(args.result_dir, output_basename) |
|
crop_coord_save_path = os.path.join(result_img_save_path, input_basename+".pkl") |
|
os.makedirs(result_img_save_path,exist_ok =True) |
|
|
|
if args.output_vid_name=="": |
|
output_vid_name = os.path.join(args.result_dir, output_basename+".mp4") |
|
else: |
|
output_vid_name = os.path.join(args.result_dir, args.output_vid_name) |
|
|
|
if get_file_type(video_path)=="video": |
|
save_dir_full = os.path.join(args.result_dir, input_basename) |
|
os.makedirs(save_dir_full,exist_ok = True) |
|
|
|
|
|
|
|
reader = imageio.get_reader(video_path) |
|
|
|
|
|
for i, im in enumerate(reader): |
|
imageio.imwrite(f"{save_dir_full}/{i:08d}.png", im) |
|
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]'))) |
|
fps = get_video_fps(video_path) |
|
else: |
|
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]')) |
|
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) |
|
fps = args.fps |
|
|
|
|
|
whisper_feature = audio_processor.audio2feat(audio_path) |
|
whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps) |
|
|
|
if os.path.exists(crop_coord_save_path) and args.use_saved_coord: |
|
print("using extracted coordinates") |
|
with open(crop_coord_save_path,'rb') as f: |
|
coord_list = pickle.load(f) |
|
frame_list = read_imgs(input_img_list) |
|
else: |
|
print("extracting landmarks...time consuming") |
|
coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift) |
|
with open(crop_coord_save_path, 'wb') as f: |
|
pickle.dump(coord_list, f) |
|
bbox_shift_text=get_bbox_range(input_img_list, bbox_shift) |
|
i = 0 |
|
input_latent_list = [] |
|
for bbox, frame in zip(coord_list, frame_list): |
|
if bbox == coord_placeholder: |
|
continue |
|
x1, y1, x2, y2 = bbox |
|
crop_frame = frame[y1:y2, x1:x2] |
|
crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) |
|
latents = vae.get_latents_for_unet(crop_frame) |
|
input_latent_list.append(latents) |
|
|
|
|
|
frame_list_cycle = frame_list + frame_list[::-1] |
|
coord_list_cycle = coord_list + coord_list[::-1] |
|
input_latent_list_cycle = input_latent_list + input_latent_list[::-1] |
|
|
|
print("start inference") |
|
video_num = len(whisper_chunks) |
|
batch_size = args.batch_size |
|
gen = datagen(whisper_chunks,input_latent_list_cycle,batch_size) |
|
res_frame_list = [] |
|
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))): |
|
|
|
tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch] |
|
audio_feature_batch = torch.stack(tensor_list).to(unet.device) |
|
audio_feature_batch = pe(audio_feature_batch) |
|
|
|
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample |
|
recon = vae.decode_latents(pred_latents) |
|
for res_frame in recon: |
|
res_frame_list.append(res_frame) |
|
|
|
|
|
print("pad talking image to original video") |
|
for i, res_frame in enumerate(tqdm(res_frame_list)): |
|
bbox = coord_list_cycle[i%(len(coord_list_cycle))] |
|
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))]) |
|
x1, y1, x2, y2 = bbox |
|
try: |
|
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) |
|
except: |
|
|
|
continue |
|
|
|
combine_frame = get_image(ori_frame,res_frame,bbox) |
|
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame) |
|
|
|
|
|
|
|
|
|
|
|
fps = 25 |
|
|
|
|
|
output_video = 'temp.mp4' |
|
|
|
|
|
def is_valid_image(file): |
|
pattern = re.compile(r'\d{8}\.png') |
|
return pattern.match(file) |
|
|
|
images = [] |
|
files = [file for file in os.listdir(result_img_save_path) if is_valid_image(file)] |
|
files.sort(key=lambda x: int(x.split('.')[0])) |
|
|
|
for file in files: |
|
filename = os.path.join(result_img_save_path, file) |
|
images.append(imageio.imread(filename)) |
|
|
|
|
|
|
|
imageio.mimwrite(output_video, images, 'FFMPEG', fps=fps, codec='libx264', pixelformat='yuv420p') |
|
|
|
|
|
|
|
|
|
|
|
input_video = './temp.mp4' |
|
|
|
if not os.path.exists(input_video): |
|
raise FileNotFoundError(f"Input video file not found: {input_video}") |
|
if not os.path.exists(audio_path): |
|
raise FileNotFoundError(f"Audio file not found: {audio_path}") |
|
|
|
|
|
reader = imageio.get_reader(input_video) |
|
fps = reader.get_meta_data()['fps'] |
|
|
|
|
|
frames = images |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(len(frames)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
video_clip = VideoFileClip(input_video) |
|
|
|
|
|
audio_clip = AudioFileClip(audio_path) |
|
|
|
|
|
video_clip = video_clip.set_audio(audio_clip) |
|
|
|
|
|
video_clip.write_videofile(output_vid_name, codec='libx264', audio_codec='aac',fps=25) |
|
|
|
os.remove("temp.mp4") |
|
|
|
print(f"result is save to {output_vid_name}") |
|
return output_vid_name,bbox_shift_text |
|
|
|
|
|
|
|
|
|
audio_processor,vae,unet,pe = load_all_model() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
timesteps = torch.tensor([0], device=device) |
|
|
|
|
|
|
|
|
|
def check_video(video): |
|
if not isinstance(video, str): |
|
return video |
|
|
|
dir_path, file_name = os.path.split(video) |
|
if file_name.startswith("outputxxx_"): |
|
return video |
|
|
|
output_file_name = "outputxxx_" + file_name |
|
|
|
os.makedirs('./results',exist_ok=True) |
|
os.makedirs('./results/output',exist_ok=True) |
|
os.makedirs('./results/input',exist_ok=True) |
|
|
|
|
|
output_video = os.path.join('./results/input', output_file_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
reader = imageio.get_reader(video) |
|
fps = reader.get_meta_data()['fps'] |
|
|
|
|
|
frames = [im for im in reader] |
|
target_fps = 25 |
|
|
|
L = len(frames) |
|
L_target = int(L / fps * target_fps) |
|
original_t = [x / fps for x in range(1, L+1)] |
|
t_idx = 0 |
|
target_frames = [] |
|
for target_t in range(1, L_target+1): |
|
while target_t / target_fps > original_t[t_idx]: |
|
t_idx += 1 |
|
if t_idx >= L: |
|
break |
|
target_frames.append(frames[t_idx]) |
|
|
|
|
|
imageio.mimwrite(output_video, target_frames, 'FFMPEG', fps=25, codec='libx264', quality=9, pixelformat='yuv420p') |
|
return output_video |
|
|
|
|
|
|
|
|
|
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown( |
|
"<div align='center'> <h1>MuseTalk: Real-Time High Quality Lip Synchronization with Latent Space Inpainting </span> </h1> \ |
|
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\ |
|
</br>\ |
|
Yue Zhang <sup>\*</sup>,\ |
|
Minhao Liu<sup>\*</sup>,\ |
|
Zhaokang Chen,\ |
|
Bin Wu<sup>†</sup>,\ |
|
Yingjie He,\ |
|
Chao Zhan,\ |
|
Wenjiang Zhou\ |
|
(<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, benbinwu@tencent.com)\ |
|
Lyra Lab, Tencent Music Entertainment\ |
|
</h2> \ |
|
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Github Repo]</a>\ |
|
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Huggingface]</a>\ |
|
<a style='font-size:18px;color: #000000' href=''> [Technical report(Coming Soon)] </a>\ |
|
<a style='font-size:18px;color: #000000' href=''> [Project Page(Coming Soon)] </a> </div>" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
audio = gr.Audio(label="Driven Audio",type="filepath") |
|
video = gr.Video(label="Reference Video",sources=['upload']) |
|
bbox_shift = gr.Number(label="BBox_shift value, px", value=0) |
|
bbox_shift_scale = gr.Textbox(label="BBox_shift recommend value lower bound,The corresponding bbox range is generated after the initial result is generated. \n If the result is not good, it can be adjusted according to this reference value", value="",interactive=False) |
|
|
|
btn = gr.Button("Generate") |
|
out1 = gr.Video() |
|
|
|
video.change( |
|
fn=check_video, inputs=[video], outputs=[video] |
|
) |
|
btn.click( |
|
fn=inference, |
|
inputs=[ |
|
audio, |
|
video, |
|
bbox_shift, |
|
], |
|
outputs=[out1,bbox_shift_scale] |
|
) |
|
|
|
|
|
ip_address = "0.0.0.0" |
|
port_number = 7860 |
|
|
|
|
|
demo.launch( |
|
share=True |
|
) |