khalidrajan's picture
End of training
abc9a6e verified
|
raw
history blame
6.68 kB
metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: bert-base-uncased_legal_ner_finetuned
    results: []

bert-base-uncased_legal_ner_finetuned

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2878
  • Law Precision: 0.7983
  • Law Recall: 0.8716
  • Law F1: 0.8333
  • Law Number: 109
  • Violated by Precision: 0.7681
  • Violated by Recall: 0.7465
  • Violated by F1: 0.7571
  • Violated by Number: 71
  • Violated on Precision: 0.4143
  • Violated on Recall: 0.4143
  • Violated on F1: 0.4143
  • Violated on Number: 70
  • Violation Precision: 0.59
  • Violation Recall: 0.6941
  • Violation F1: 0.6378
  • Violation Number: 425
  • Overall Precision: 0.6227
  • Overall Recall: 0.6993
  • Overall F1: 0.6588
  • Overall Accuracy: 0.9462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Law Precision Law Recall Law F1 Law Number Violated by Precision Violated by Recall Violated by F1 Violated by Number Violated on Precision Violated on Recall Violated on F1 Violated on Number Violation Precision Violation Recall Violation F1 Violation Number Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 85 0.8260 0.0 0.0 0.0 109 0.0 0.0 0.0 71 0.0 0.0 0.0 70 0.0 0.0 0.0 425 0.0 0.0 0.0 0.7656
No log 2.0 170 0.4451 0.0 0.0 0.0 109 0.0 0.0 0.0 71 0.0 0.0 0.0 70 0.1204 0.1624 0.1383 425 0.1204 0.1022 0.1106 0.8766
No log 3.0 255 0.3153 0.1724 0.0917 0.1198 109 0.0 0.0 0.0 71 0.0 0.0 0.0 70 0.3142 0.36 0.3355 425 0.2991 0.2415 0.2672 0.9067
No log 4.0 340 0.2416 0.6574 0.6514 0.6544 109 0.0 0.0 0.0 71 0.16 0.0571 0.0842 70 0.4496 0.5671 0.5016 425 0.4470 0.4681 0.4573 0.9286
No log 5.0 425 0.2185 0.7768 0.7982 0.7873 109 0.6491 0.5211 0.5781 71 0.3125 0.2857 0.2985 70 0.5019 0.6329 0.5598 425 0.5371 0.6119 0.5720 0.9412
0.5331 6.0 510 0.2399 0.6767 0.8257 0.7438 109 0.6842 0.7324 0.7075 71 0.2841 0.3571 0.3165 70 0.5820 0.7012 0.6361 425 0.5748 0.6889 0.6267 0.9416
0.5331 7.0 595 0.2407 0.7603 0.8440 0.8 109 0.7286 0.7183 0.7234 71 0.4348 0.4286 0.4317 70 0.5752 0.6753 0.6212 425 0.6061 0.6815 0.6416 0.9441
0.5331 8.0 680 0.2610 0.7661 0.8716 0.8155 109 0.6 0.7606 0.6708 71 0.3043 0.4 0.3457 70 0.5948 0.7012 0.6436 425 0.5886 0.7037 0.6410 0.9428
0.5331 9.0 765 0.2790 0.744 0.8532 0.7949 109 0.8667 0.7324 0.7939 71 0.3788 0.3571 0.3676 70 0.5812 0.6824 0.6277 425 0.6133 0.6815 0.6456 0.9461
0.5331 10.0 850 0.2878 0.7983 0.8716 0.8333 109 0.7681 0.7465 0.7571 71 0.4143 0.4143 0.4143 70 0.59 0.6941 0.6378 425 0.6227 0.6993 0.6588 0.9462

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1