|
--- |
|
license: mit |
|
base_model: FacebookAI/roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: roberta_crf_ner_finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta_crf_ner_finetuned |
|
|
|
This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
- Precision: 0.7893 |
|
- Recall: 0.6294 |
|
- F1: 0.6950 |
|
- Accuracy: 0.8037 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0 | 1.0 | 85 | nan | 1.0 | 0.0 | 0.0 | 0.7707 | |
|
| 0.0 | 2.0 | 170 | nan | 0.5437 | 0.1932 | 0.1694 | 0.8848 | |
|
| 0.0 | 3.0 | 255 | nan | 0.4412 | 0.3360 | 0.3230 | 0.9228 | |
|
| 0.0 | 4.0 | 340 | nan | 0.4888 | 0.6412 | 0.5523 | 0.9161 | |
|
| 0.0 | 5.0 | 425 | nan | 0.6312 | 0.6266 | 0.6206 | 0.9451 | |
|
| 0.0 | 6.0 | 510 | nan | 0.6319 | 0.6851 | 0.6560 | 0.9484 | |
|
| 0.0 | 7.0 | 595 | nan | 0.6655 | 0.7110 | 0.6869 | 0.9518 | |
|
| 0.0 | 8.0 | 680 | nan | 0.6341 | 0.7094 | 0.6693 | 0.9508 | |
|
| 0.0 | 9.0 | 765 | nan | 0.6745 | 0.7127 | 0.6924 | 0.9533 | |
|
| 0.0 | 10.0 | 850 | nan | 0.6886 | 0.7175 | 0.7019 | 0.9548 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|