Technical Report and Model Pipeline

To access our technical report and model pipeline scripts visit our github

SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-l
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Represent this sentence for searching relevant passages: Nov 6 2002 Easter seals (philately)',
    '06/11/2002 An Easter seal is a form of charity label issued to raise funds for charitable purposes. They are issued by the Easterseals charity in the United States, and by the Canadian Easter Seals charities. Easter seals are applied to the front of mail to show support for particular charitable causes. They are distributed along with appeals to donate to the charities they support. Easter seals are a form of Cinderella stamp. They do not have any postal value. Cinderella stamps\n',
    '2017 Winter The Waterfall Model was the first Process Model to be introduced. It is also referred to as a linear-sequential life cycle model. ... The Waterfall model is the earliest SDLC approach that was used for software development. The waterfall Model illustrates the software development process in a linear sequential flow.\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 55,736 training samples
  • Columns: anchors and positive
  • Approximate statistics based on the first 1000 samples:
    anchors positive
    type string string
    details
    • min: 14 tokens
    • mean: 20.25 tokens
    • max: 33 tokens
    • min: 15 tokens
    • mean: 47.2 tokens
    • max: 75 tokens
  • Samples:
    anchors positive
    Represent this sentence for searching relevant passages: are bugs attracted to citronella November 10? Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 11/10
    Represent this sentence for searching relevant passages: are bugs attracted to citronella 11/10/09? Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 11/10/09
    Represent this sentence for searching relevant passages: are bugs attracted to citronella Jan 15? Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 01/15
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,000 evaluation samples
  • Columns: anchors and positive
  • Approximate statistics based on the first 1000 samples:
    anchors positive
    type string string
    details
    • min: 12 tokens
    • mean: 21.64 tokens
    • max: 40 tokens
    • min: 20 tokens
    • mean: 66.86 tokens
    • max: 512 tokens
  • Samples:
    anchors positive
    Represent this sentence for searching relevant passages: today:2068-02-10 what is the meaning of the idiom put two and two together last monday put two and two together. to understand something by using the information you have: I didn't tell her George had left, but she noticed his car was gone and put two and two together. (Definition of put two and two together from the Cambridge Academic Content Dictionary © Cambridge University Press) 02/06/2068
    Represent this sentence for searching relevant passages: Complete the Throat of the World Quest in Skyrim The Throat of the World is the fifth quest in the second act of the Skyrim’s main quest. During this mission, all the mystery about the game’s main antagonist, Alduin, will be revealed to you.
    Represent this sentence for searching relevant passages: are blanco kitchen faucets good 04/13/86? Nevertheless, these are good to very good faucets built with good quality components throughout, backed by a strong warranty and superior customer service from a well-established company. Blanco sells only kitchen, prep and bar faucets, nothing for the bathroom. Apr 13 1986
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 1e-06
  • weight_decay: 0.01
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • warmup_steps: 400
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-06
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 400
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss
0.0006 1 1.9721 -
0.0057 10 1.9663 -
0.0115 20 1.947 -
0.0172 30 1.9039 -
0.0230 40 1.9672 -
0.0287 50 1.894 -
0.0344 60 1.8953 -
0.0402 70 1.9001 -
0.0459 80 1.8511 -
0.0517 90 1.7816 -
0.0574 100 1.7657 -
0.0631 110 1.6932 -
0.0689 120 1.6445 -
0.0746 130 1.6565 -
0.0804 140 1.5077 -
0.0861 150 1.4675 -
0.0918 160 1.4307 -
0.0976 170 1.2343 -
0.1033 180 1.1075 -
0.1091 190 1.1142 -
0.1148 200 1.0546 0.0897
0.1206 210 0.9872 -
0.1263 220 0.8933 -
0.1320 230 0.8066 -
0.1378 240 0.7317 -
0.1435 250 0.7404 -
0.1493 260 0.6348 -
0.1550 270 0.6399 -
0.1607 280 0.549 -
0.1665 290 0.4844 -
0.1722 300 0.5109 -
0.1780 310 0.4412 -
0.1837 320 0.4451 -
0.1894 330 0.373 -
0.1952 340 0.4318 -
0.2009 350 0.3996 -
0.2067 360 0.3534 -
0.2124 370 0.3795 -
0.2181 380 0.3195 -
0.2239 390 0.313 -
0.2296 400 0.3174 0.1864
0.2354 410 0.3255 -
0.2411 420 0.3172 -
0.2468 430 0.2601 -
0.2526 440 0.2862 -
0.2583 450 0.3042 -
0.2641 460 0.305 -
0.2698 470 0.2722 -
0.2755 480 0.2684 -
0.2813 490 0.2114 -
0.2870 500 0.2599 -
0.2928 510 0.2226 -
0.2985 520 0.213 -
0.3042 530 0.1968 -
0.3100 540 0.2005 -
0.3157 550 0.17 -
0.3215 560 0.2275 -
0.3272 570 0.1482 -
0.3330 580 0.1404 -
0.3387 590 0.1743 -
0.3444 600 0.1887 0.2803
0.3502 610 0.2018 -
0.3559 620 0.18 -
0.3617 630 0.146 -
0.3674 640 0.1308 -
0.3731 650 0.159 -
0.3789 660 0.1528 -
0.3846 670 0.1439 -
0.3904 680 0.1376 -
0.3961 690 0.1451 -
0.4018 700 0.1408 -
0.4076 710 0.1571 -
0.4133 720 0.1318 -
0.4191 730 0.1548 -
0.4248 740 0.1131 -
0.4305 750 0.1171 -
0.4363 760 0.1246 -
0.4420 770 0.1204 -
0.4478 780 0.1418 -
0.4535 790 0.0907 -
0.4592 800 0.1013 0.3217
0.4650 810 0.1067 -
0.4707 820 0.1064 -
0.4765 830 0.1089 -
0.4822 840 0.1044 -
0.4879 850 0.0916 -
0.4937 860 0.1344 -
0.4994 870 0.1377 -
0.5052 880 0.1078 -
0.5109 890 0.0837 -
0.5166 900 0.0893 -
0.5224 910 0.4395 -
0.5281 920 0.6783 -
0.5339 930 0.6341 -
0.5396 940 0.5763 -
0.5454 950 0.5283 -
0.5511 960 0.4955 -
0.5568 970 0.5138 -
0.5626 980 0.4983 -
0.5683 990 0.5239 -
0.5741 1000 0.5368 0.1056
0.5798 1010 0.5011 -
0.5855 1020 0.5244 -
0.5913 1030 0.39 -
0.5970 1040 0.4645 -
0.6028 1050 0.4164 -
0.6085 1060 0.4698 -
0.6142 1070 0.4074 -
0.6200 1080 0.4608 -
0.6257 1090 0.5081 -
0.6315 1100 0.4749 -
0.6372 1110 0.4384 -
0.6429 1120 0.3604 -
0.6487 1130 0.3853 -
0.6544 1140 0.3238 -
0.6602 1150 0.3656 -
0.6659 1160 0.2918 -
0.6716 1170 0.3919 -
0.6774 1180 0.3366 -
0.6831 1190 0.3731 -
0.6889 1200 0.4923 0.0583
0.6946 1210 0.3101 -
0.7003 1220 0.3177 -
0.7061 1230 0.3779 -
0.7118 1240 0.3342 -
0.7176 1250 0.2819 -
0.7233 1260 0.3247 -
0.7290 1270 0.4053 -
0.7348 1280 0.3277 -
0.7405 1290 0.3325 -
0.7463 1300 0.3827 -
0.7520 1310 0.2674 -
0.7577 1320 0.309 -
0.7635 1330 0.3193 -
0.7692 1340 0.3399 -
0.7750 1350 0.4044 -
0.7807 1360 0.3436 -
0.7865 1370 0.851 -
0.7922 1380 0.9553 -
0.7979 1390 0.8694 -
0.8037 1400 0.8736 0.0333
0.8094 1410 0.7984 -
0.8152 1420 0.8228 -
0.8209 1430 0.8026 -
0.8266 1440 0.8568 -
0.8324 1450 0.8529 -
0.8381 1460 0.757 -
0.8439 1470 0.779 -
0.8496 1480 0.8002 -
0.8553 1490 0.8532 -
0.8611 1500 0.7195 -
0.8668 1510 0.7598 -
0.8726 1520 0.8295 -
0.8783 1530 0.7588 -
0.8840 1540 0.7698 -
0.8898 1550 0.792 -
0.8955 1560 0.8175 -
0.9013 1570 0.7195 -
0.9070 1580 0.7383 -
0.9127 1590 0.4577 -
0.9185 1600 0.0621 0.0207
0.9242 1610 0.0644 -
0.9300 1620 0.0578 -
0.9357 1630 0.0368 -
0.9414 1640 0.056 -
0.9472 1650 0.059 -
0.9529 1660 0.0442 -
0.9587 1670 0.0527 -
0.9644 1680 0.0651 -
0.9701 1690 0.0515 -
0.9759 1700 0.0512 -
0.9816 1710 0.0543 -
0.9874 1720 0.0676 -
0.9931 1730 0.0593 -
0.9989 1740 0.0558 -

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.43.4
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
5
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for khoj-ai/timely-arctic-large

Finetuned
(7)
this model