Technical Report and Model Pipeline
To access our technical report and model pipeline scripts visit our github
SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Represent this sentence for searching relevant passages: Nov 6 2002 Easter seals (philately)',
'06/11/2002 An Easter seal is a form of charity label issued to raise funds for charitable purposes. They are issued by the Easterseals charity in the United States, and by the Canadian Easter Seals charities. Easter seals are applied to the front of mail to show support for particular charitable causes. They are distributed along with appeals to donate to the charities they support. Easter seals are a form of Cinderella stamp. They do not have any postal value. Cinderella stamps\n',
'2017 Winter The Waterfall Model was the first Process Model to be introduced. It is also referred to as a linear-sequential life cycle model. ... The Waterfall model is the earliest SDLC approach that was used for software development. The waterfall Model illustrates the software development process in a linear sequential flow.\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 55,736 training samples
- Columns:
anchors
andpositive
- Approximate statistics based on the first 1000 samples:
anchors positive type string string details - min: 14 tokens
- mean: 20.25 tokens
- max: 33 tokens
- min: 15 tokens
- mean: 47.2 tokens
- max: 75 tokens
- Samples:
anchors positive Represent this sentence for searching relevant passages: are bugs attracted to citronella November 10?
Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 11/10
Represent this sentence for searching relevant passages: are bugs attracted to citronella 11/10/09?
Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 11/10/09
Represent this sentence for searching relevant passages: are bugs attracted to citronella Jan 15?
Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 01/15
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,000 evaluation samples
- Columns:
anchors
andpositive
- Approximate statistics based on the first 1000 samples:
anchors positive type string string details - min: 12 tokens
- mean: 21.64 tokens
- max: 40 tokens
- min: 20 tokens
- mean: 66.86 tokens
- max: 512 tokens
- Samples:
anchors positive Represent this sentence for searching relevant passages: today:2068-02-10 what is the meaning of the idiom put two and two together last monday
put two and two together. to understand something by using the information you have: I didn't tell her George had left, but she noticed his car was gone and put two and two together. (Definition of put two and two together from the Cambridge Academic Content Dictionary © Cambridge University Press) 02/06/2068
Represent this sentence for searching relevant passages: Complete the Throat of the World Quest in Skyrim
The Throat of the World is the fifth quest in the second act of the Skyrim’s main quest. During this mission, all the mystery about the game’s main antagonist, Alduin, will be revealed to you.
Represent this sentence for searching relevant passages: are blanco kitchen faucets good 04/13/86?
Nevertheless, these are good to very good faucets built with good quality components throughout, backed by a strong warranty and superior customer service from a well-established company. Blanco sells only kitchen, prep and bar faucets, nothing for the bathroom. Apr 13 1986
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 1e-06weight_decay
: 0.01num_train_epochs
: 1warmup_ratio
: 0.1warmup_steps
: 400bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-06weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 400log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0006 | 1 | 1.9721 | - |
0.0057 | 10 | 1.9663 | - |
0.0115 | 20 | 1.947 | - |
0.0172 | 30 | 1.9039 | - |
0.0230 | 40 | 1.9672 | - |
0.0287 | 50 | 1.894 | - |
0.0344 | 60 | 1.8953 | - |
0.0402 | 70 | 1.9001 | - |
0.0459 | 80 | 1.8511 | - |
0.0517 | 90 | 1.7816 | - |
0.0574 | 100 | 1.7657 | - |
0.0631 | 110 | 1.6932 | - |
0.0689 | 120 | 1.6445 | - |
0.0746 | 130 | 1.6565 | - |
0.0804 | 140 | 1.5077 | - |
0.0861 | 150 | 1.4675 | - |
0.0918 | 160 | 1.4307 | - |
0.0976 | 170 | 1.2343 | - |
0.1033 | 180 | 1.1075 | - |
0.1091 | 190 | 1.1142 | - |
0.1148 | 200 | 1.0546 | 0.0897 |
0.1206 | 210 | 0.9872 | - |
0.1263 | 220 | 0.8933 | - |
0.1320 | 230 | 0.8066 | - |
0.1378 | 240 | 0.7317 | - |
0.1435 | 250 | 0.7404 | - |
0.1493 | 260 | 0.6348 | - |
0.1550 | 270 | 0.6399 | - |
0.1607 | 280 | 0.549 | - |
0.1665 | 290 | 0.4844 | - |
0.1722 | 300 | 0.5109 | - |
0.1780 | 310 | 0.4412 | - |
0.1837 | 320 | 0.4451 | - |
0.1894 | 330 | 0.373 | - |
0.1952 | 340 | 0.4318 | - |
0.2009 | 350 | 0.3996 | - |
0.2067 | 360 | 0.3534 | - |
0.2124 | 370 | 0.3795 | - |
0.2181 | 380 | 0.3195 | - |
0.2239 | 390 | 0.313 | - |
0.2296 | 400 | 0.3174 | 0.1864 |
0.2354 | 410 | 0.3255 | - |
0.2411 | 420 | 0.3172 | - |
0.2468 | 430 | 0.2601 | - |
0.2526 | 440 | 0.2862 | - |
0.2583 | 450 | 0.3042 | - |
0.2641 | 460 | 0.305 | - |
0.2698 | 470 | 0.2722 | - |
0.2755 | 480 | 0.2684 | - |
0.2813 | 490 | 0.2114 | - |
0.2870 | 500 | 0.2599 | - |
0.2928 | 510 | 0.2226 | - |
0.2985 | 520 | 0.213 | - |
0.3042 | 530 | 0.1968 | - |
0.3100 | 540 | 0.2005 | - |
0.3157 | 550 | 0.17 | - |
0.3215 | 560 | 0.2275 | - |
0.3272 | 570 | 0.1482 | - |
0.3330 | 580 | 0.1404 | - |
0.3387 | 590 | 0.1743 | - |
0.3444 | 600 | 0.1887 | 0.2803 |
0.3502 | 610 | 0.2018 | - |
0.3559 | 620 | 0.18 | - |
0.3617 | 630 | 0.146 | - |
0.3674 | 640 | 0.1308 | - |
0.3731 | 650 | 0.159 | - |
0.3789 | 660 | 0.1528 | - |
0.3846 | 670 | 0.1439 | - |
0.3904 | 680 | 0.1376 | - |
0.3961 | 690 | 0.1451 | - |
0.4018 | 700 | 0.1408 | - |
0.4076 | 710 | 0.1571 | - |
0.4133 | 720 | 0.1318 | - |
0.4191 | 730 | 0.1548 | - |
0.4248 | 740 | 0.1131 | - |
0.4305 | 750 | 0.1171 | - |
0.4363 | 760 | 0.1246 | - |
0.4420 | 770 | 0.1204 | - |
0.4478 | 780 | 0.1418 | - |
0.4535 | 790 | 0.0907 | - |
0.4592 | 800 | 0.1013 | 0.3217 |
0.4650 | 810 | 0.1067 | - |
0.4707 | 820 | 0.1064 | - |
0.4765 | 830 | 0.1089 | - |
0.4822 | 840 | 0.1044 | - |
0.4879 | 850 | 0.0916 | - |
0.4937 | 860 | 0.1344 | - |
0.4994 | 870 | 0.1377 | - |
0.5052 | 880 | 0.1078 | - |
0.5109 | 890 | 0.0837 | - |
0.5166 | 900 | 0.0893 | - |
0.5224 | 910 | 0.4395 | - |
0.5281 | 920 | 0.6783 | - |
0.5339 | 930 | 0.6341 | - |
0.5396 | 940 | 0.5763 | - |
0.5454 | 950 | 0.5283 | - |
0.5511 | 960 | 0.4955 | - |
0.5568 | 970 | 0.5138 | - |
0.5626 | 980 | 0.4983 | - |
0.5683 | 990 | 0.5239 | - |
0.5741 | 1000 | 0.5368 | 0.1056 |
0.5798 | 1010 | 0.5011 | - |
0.5855 | 1020 | 0.5244 | - |
0.5913 | 1030 | 0.39 | - |
0.5970 | 1040 | 0.4645 | - |
0.6028 | 1050 | 0.4164 | - |
0.6085 | 1060 | 0.4698 | - |
0.6142 | 1070 | 0.4074 | - |
0.6200 | 1080 | 0.4608 | - |
0.6257 | 1090 | 0.5081 | - |
0.6315 | 1100 | 0.4749 | - |
0.6372 | 1110 | 0.4384 | - |
0.6429 | 1120 | 0.3604 | - |
0.6487 | 1130 | 0.3853 | - |
0.6544 | 1140 | 0.3238 | - |
0.6602 | 1150 | 0.3656 | - |
0.6659 | 1160 | 0.2918 | - |
0.6716 | 1170 | 0.3919 | - |
0.6774 | 1180 | 0.3366 | - |
0.6831 | 1190 | 0.3731 | - |
0.6889 | 1200 | 0.4923 | 0.0583 |
0.6946 | 1210 | 0.3101 | - |
0.7003 | 1220 | 0.3177 | - |
0.7061 | 1230 | 0.3779 | - |
0.7118 | 1240 | 0.3342 | - |
0.7176 | 1250 | 0.2819 | - |
0.7233 | 1260 | 0.3247 | - |
0.7290 | 1270 | 0.4053 | - |
0.7348 | 1280 | 0.3277 | - |
0.7405 | 1290 | 0.3325 | - |
0.7463 | 1300 | 0.3827 | - |
0.7520 | 1310 | 0.2674 | - |
0.7577 | 1320 | 0.309 | - |
0.7635 | 1330 | 0.3193 | - |
0.7692 | 1340 | 0.3399 | - |
0.7750 | 1350 | 0.4044 | - |
0.7807 | 1360 | 0.3436 | - |
0.7865 | 1370 | 0.851 | - |
0.7922 | 1380 | 0.9553 | - |
0.7979 | 1390 | 0.8694 | - |
0.8037 | 1400 | 0.8736 | 0.0333 |
0.8094 | 1410 | 0.7984 | - |
0.8152 | 1420 | 0.8228 | - |
0.8209 | 1430 | 0.8026 | - |
0.8266 | 1440 | 0.8568 | - |
0.8324 | 1450 | 0.8529 | - |
0.8381 | 1460 | 0.757 | - |
0.8439 | 1470 | 0.779 | - |
0.8496 | 1480 | 0.8002 | - |
0.8553 | 1490 | 0.8532 | - |
0.8611 | 1500 | 0.7195 | - |
0.8668 | 1510 | 0.7598 | - |
0.8726 | 1520 | 0.8295 | - |
0.8783 | 1530 | 0.7588 | - |
0.8840 | 1540 | 0.7698 | - |
0.8898 | 1550 | 0.792 | - |
0.8955 | 1560 | 0.8175 | - |
0.9013 | 1570 | 0.7195 | - |
0.9070 | 1580 | 0.7383 | - |
0.9127 | 1590 | 0.4577 | - |
0.9185 | 1600 | 0.0621 | 0.0207 |
0.9242 | 1610 | 0.0644 | - |
0.9300 | 1620 | 0.0578 | - |
0.9357 | 1630 | 0.0368 | - |
0.9414 | 1640 | 0.056 | - |
0.9472 | 1650 | 0.059 | - |
0.9529 | 1660 | 0.0442 | - |
0.9587 | 1670 | 0.0527 | - |
0.9644 | 1680 | 0.0651 | - |
0.9701 | 1690 | 0.0515 | - |
0.9759 | 1700 | 0.0512 | - |
0.9816 | 1710 | 0.0543 | - |
0.9874 | 1720 | 0.0676 | - |
0.9931 | 1730 | 0.0593 | - |
0.9989 | 1740 | 0.0558 | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.43.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 33
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for khoj-ai/timely-arctic-large
Base model
Snowflake/snowflake-arctic-embed-l