File size: 30,010 Bytes
3e61629 749a83f 3e61629 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 3abe895 44731f7 3abe895 44731f7 3abe895 44731f7 3abe895 44731f7 24d3801 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 749a83f 44731f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
---
base_model: Snowflake/snowflake-arctic-embed-l
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:55736
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Represent this sentence for searching relevant passages: Jan 20
Become a Real Life Superhero'
sentences:
- 'The army corps is the largest regular army formation, though in wartime two or
more corps may be combined to form a field army (commanded by a general), and
field armies in turn may be combined to form an army group. 03/28/31
'
- '01/20 The world is a dangerous place and sometimes there''s a need for superheroes.
Regrettably, there''s no real way to gain super strength or to fly like in the
comic books.
'
- ' Stone is useful for both building and crafting in The Blockheads. It''s easy
to get stone, as explained here. 12/09
'
- source_sentence: 'Represent this sentence for searching relevant passages: today:2046-10-23
last summer social security benefits paid when?'
sentences:
- 'Summer 2045 We pay Social Security benefits monthly. The benefits are paid in
the month following the month for which they are due. ... Generally, the day of
the month you receive your benefit payment depends on the birth date of the person
for whose earnings record you receive benefits.
'
- '07/26/95 Foursquare’s Explore feature is a great tool to help you find the best
and popular places nearby, including popular restaurants, sights, outdoor places,
nightlife spots, and shops.
'
- 'Gesso transferring is a way of displaying an image on an alternate surface. By
using gesso and a reversed image, the image will then take on the surface''s texture.
04/28/23
'
- source_sentence: 'Represent this sentence for searching relevant passages: Floor
Press 01/02/91'
sentences:
- 'While the stomach flu affects the stomach, influenza only affects the respiratory
system (nose, throat, and lungs). Symptoms of the flu include fever, muscle aches,
sore throat, and cough, and influenza can be prevented with a flu shot. Thankfully,
people with the flu usually don''t have gastroenteritis symptoms.
'
- 'If you’re looking to build arm and chest strength, the floor press is a great
exercise to add to your routine. It works like a bench press, but by lying directly
on the floor, you give your back better support and take away your ability to
drive with your legs. 2091 Jan 2
'
- '"Flashes. When the vitreous gel inside your eye rubs or pulls on the retina,
you may see what looks like flashing lights or lightening streaks. You may have
experienced this sensation if you have ever been hit in the eye and see ""stars.""
These flashes of light can appear off and on for several weeks or months. 2034
Winter"
'
- source_sentence: 'Represent this sentence for searching relevant passages: today:2022-11-01
what to do in west yellowstone in march 49 years ago '
sentences:
- '[''Yellowstone Zipline Adventure Park. ... '', ''Playmill Theatre. ... '', ''Raft
the Gallatin River. ... '', ''Grizzly and Wolf Discovery Center. ... '', ''Cross-Country
Ski the Rendezvous Trails. ... '', ''Cowboy Up for a Rodeo. ... '', ''Fish Hebgen
Lake. ... '', ''Visit Earthquake Lake.''] 03/31/1973
'
- '12/14/2041 Intelligence in the normal range is a polygenic trait, meaning that
it is influenced by more than one gene, and in the case of intelligence at least
500 genes. Further, explaining the similarity in IQ of closely related persons
requires careful study because environmental factors may be correlated with genetic
factors.
'
- 'Are you a student who is having a hard time with algebra? Or perhaps you''re
trying to brush up on your math skills after not using for them for years.
'
- source_sentence: 'Represent this sentence for searching relevant passages: Nov 6
2002 Easter seals (philately)'
sentences:
- '"03/08/2050 This is a list of wild forests in the state of New York. Lands designated
as ""wild forest"" in New York are managed by the New York State Department of
Environmental Conservation as part of the Forest Preserve. Management Wild forests
are intended to retain an essentially wild and natural character, however management
facilitates a greater amount of recreational use than areas designated by the
state as wilderness, which feature an increased sense of remoteness and solitude.
Most are located within the boundaries of Adirondack Park or Catskill Park. List
of New York wild forests See also Albany Pine Bush Long Island Central Pine Barrens
Rome Sand Plains References External links NYS Department of Environmental Conservation:
Forest Preserve unit descriptions Land units maps: Adirondack Park, Catskill Park
wild forests wild forests New York wild forests New York wild forests"
'
- '2017 Winter The Waterfall Model was the first Process Model to be introduced.
It is also referred to as a linear-sequential life cycle model. ... The Waterfall
model is the earliest SDLC approach that was used for software development. The
waterfall Model illustrates the software development process in a linear sequential
flow.
'
- '06/11/2002 An Easter seal is a form of charity label issued to raise funds for
charitable purposes. They are issued by the Easterseals charity in the United
States, and by the Canadian Easter Seals charities. Easter seals are applied to
the front of mail to show support for particular charitable causes. They are distributed
along with appeals to donate to the charities they support. Easter seals are a
form of Cinderella stamp. They do not have any postal value. Cinderella stamps
'
---
# Technical Report and Model Pipeline
To access our technical report and model pipeline scripts visit our [github](https://github.com/khoj-ai/timely/tree/main)
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision b7c623b8902f02627a9420b73b2fd6300aad7a68 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Represent this sentence for searching relevant passages: Nov 6 2002 Easter seals (philately)',
'06/11/2002 An Easter seal is a form of charity label issued to raise funds for charitable purposes. They are issued by the Easterseals charity in the United States, and by the Canadian Easter Seals charities. Easter seals are applied to the front of mail to show support for particular charitable causes. They are distributed along with appeals to donate to the charities they support. Easter seals are a form of Cinderella stamp. They do not have any postal value. Cinderella stamps\n',
'2017 Winter The Waterfall Model was the first Process Model to be introduced. It is also referred to as a linear-sequential life cycle model. ... The Waterfall model is the earliest SDLC approach that was used for software development. The waterfall Model illustrates the software development process in a linear sequential flow.\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 55,736 training samples
* Columns: <code>anchors</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchors | positive |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 14 tokens</li><li>mean: 20.25 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 47.2 tokens</li><li>max: 75 tokens</li></ul> |
* Samples:
| anchors | positive |
|:--------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Represent this sentence for searching relevant passages: are bugs attracted to citronella November 10?</code> | <code>Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 11/10<br></code> |
| <code>Represent this sentence for searching relevant passages: are bugs attracted to citronella 11/10/09?</code> | <code>Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 11/10/09<br></code> |
| <code>Represent this sentence for searching relevant passages: are bugs attracted to citronella Jan 15?</code> | <code>Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 01/15<br></code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,000 evaluation samples
* Columns: <code>anchors</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchors | positive |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 21.64 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 66.86 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| anchors | positive |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Represent this sentence for searching relevant passages: today:2068-02-10 what is the meaning of the idiom put two and two together last monday </code> | <code>put two and two together. to understand something by using the information you have: I didn't tell her George had left, but she noticed his car was gone and put two and two together. (Definition of put two and two together from the Cambridge Academic Content Dictionary © Cambridge University Press) 02/06/2068<br></code> |
| <code>Represent this sentence for searching relevant passages: Complete the Throat of the World Quest in Skyrim</code> | <code>The Throat of the World is the fifth quest in the second act of the Skyrim’s main quest. During this mission, all the mystery about the game’s main antagonist, Alduin, will be revealed to you.<br></code> |
| <code>Represent this sentence for searching relevant passages: are blanco kitchen faucets good 04/13/86?</code> | <code>Nevertheless, these are good to very good faucets built with good quality components throughout, backed by a strong warranty and superior customer service from a well-established company. Blanco sells only kitchen, prep and bar faucets, nothing for the bathroom. Apr 13 1986<br></code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 1e-06
- `weight_decay`: 0.01
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `warmup_steps`: 400
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-06
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 400
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | loss |
|:------:|:----:|:-------------:|:------:|
| 0.0006 | 1 | 1.9721 | - |
| 0.0057 | 10 | 1.9663 | - |
| 0.0115 | 20 | 1.947 | - |
| 0.0172 | 30 | 1.9039 | - |
| 0.0230 | 40 | 1.9672 | - |
| 0.0287 | 50 | 1.894 | - |
| 0.0344 | 60 | 1.8953 | - |
| 0.0402 | 70 | 1.9001 | - |
| 0.0459 | 80 | 1.8511 | - |
| 0.0517 | 90 | 1.7816 | - |
| 0.0574 | 100 | 1.7657 | - |
| 0.0631 | 110 | 1.6932 | - |
| 0.0689 | 120 | 1.6445 | - |
| 0.0746 | 130 | 1.6565 | - |
| 0.0804 | 140 | 1.5077 | - |
| 0.0861 | 150 | 1.4675 | - |
| 0.0918 | 160 | 1.4307 | - |
| 0.0976 | 170 | 1.2343 | - |
| 0.1033 | 180 | 1.1075 | - |
| 0.1091 | 190 | 1.1142 | - |
| 0.1148 | 200 | 1.0546 | 0.0897 |
| 0.1206 | 210 | 0.9872 | - |
| 0.1263 | 220 | 0.8933 | - |
| 0.1320 | 230 | 0.8066 | - |
| 0.1378 | 240 | 0.7317 | - |
| 0.1435 | 250 | 0.7404 | - |
| 0.1493 | 260 | 0.6348 | - |
| 0.1550 | 270 | 0.6399 | - |
| 0.1607 | 280 | 0.549 | - |
| 0.1665 | 290 | 0.4844 | - |
| 0.1722 | 300 | 0.5109 | - |
| 0.1780 | 310 | 0.4412 | - |
| 0.1837 | 320 | 0.4451 | - |
| 0.1894 | 330 | 0.373 | - |
| 0.1952 | 340 | 0.4318 | - |
| 0.2009 | 350 | 0.3996 | - |
| 0.2067 | 360 | 0.3534 | - |
| 0.2124 | 370 | 0.3795 | - |
| 0.2181 | 380 | 0.3195 | - |
| 0.2239 | 390 | 0.313 | - |
| 0.2296 | 400 | 0.3174 | 0.1864 |
| 0.2354 | 410 | 0.3255 | - |
| 0.2411 | 420 | 0.3172 | - |
| 0.2468 | 430 | 0.2601 | - |
| 0.2526 | 440 | 0.2862 | - |
| 0.2583 | 450 | 0.3042 | - |
| 0.2641 | 460 | 0.305 | - |
| 0.2698 | 470 | 0.2722 | - |
| 0.2755 | 480 | 0.2684 | - |
| 0.2813 | 490 | 0.2114 | - |
| 0.2870 | 500 | 0.2599 | - |
| 0.2928 | 510 | 0.2226 | - |
| 0.2985 | 520 | 0.213 | - |
| 0.3042 | 530 | 0.1968 | - |
| 0.3100 | 540 | 0.2005 | - |
| 0.3157 | 550 | 0.17 | - |
| 0.3215 | 560 | 0.2275 | - |
| 0.3272 | 570 | 0.1482 | - |
| 0.3330 | 580 | 0.1404 | - |
| 0.3387 | 590 | 0.1743 | - |
| 0.3444 | 600 | 0.1887 | 0.2803 |
| 0.3502 | 610 | 0.2018 | - |
| 0.3559 | 620 | 0.18 | - |
| 0.3617 | 630 | 0.146 | - |
| 0.3674 | 640 | 0.1308 | - |
| 0.3731 | 650 | 0.159 | - |
| 0.3789 | 660 | 0.1528 | - |
| 0.3846 | 670 | 0.1439 | - |
| 0.3904 | 680 | 0.1376 | - |
| 0.3961 | 690 | 0.1451 | - |
| 0.4018 | 700 | 0.1408 | - |
| 0.4076 | 710 | 0.1571 | - |
| 0.4133 | 720 | 0.1318 | - |
| 0.4191 | 730 | 0.1548 | - |
| 0.4248 | 740 | 0.1131 | - |
| 0.4305 | 750 | 0.1171 | - |
| 0.4363 | 760 | 0.1246 | - |
| 0.4420 | 770 | 0.1204 | - |
| 0.4478 | 780 | 0.1418 | - |
| 0.4535 | 790 | 0.0907 | - |
| 0.4592 | 800 | 0.1013 | 0.3217 |
| 0.4650 | 810 | 0.1067 | - |
| 0.4707 | 820 | 0.1064 | - |
| 0.4765 | 830 | 0.1089 | - |
| 0.4822 | 840 | 0.1044 | - |
| 0.4879 | 850 | 0.0916 | - |
| 0.4937 | 860 | 0.1344 | - |
| 0.4994 | 870 | 0.1377 | - |
| 0.5052 | 880 | 0.1078 | - |
| 0.5109 | 890 | 0.0837 | - |
| 0.5166 | 900 | 0.0893 | - |
| 0.5224 | 910 | 0.4395 | - |
| 0.5281 | 920 | 0.6783 | - |
| 0.5339 | 930 | 0.6341 | - |
| 0.5396 | 940 | 0.5763 | - |
| 0.5454 | 950 | 0.5283 | - |
| 0.5511 | 960 | 0.4955 | - |
| 0.5568 | 970 | 0.5138 | - |
| 0.5626 | 980 | 0.4983 | - |
| 0.5683 | 990 | 0.5239 | - |
| 0.5741 | 1000 | 0.5368 | 0.1056 |
| 0.5798 | 1010 | 0.5011 | - |
| 0.5855 | 1020 | 0.5244 | - |
| 0.5913 | 1030 | 0.39 | - |
| 0.5970 | 1040 | 0.4645 | - |
| 0.6028 | 1050 | 0.4164 | - |
| 0.6085 | 1060 | 0.4698 | - |
| 0.6142 | 1070 | 0.4074 | - |
| 0.6200 | 1080 | 0.4608 | - |
| 0.6257 | 1090 | 0.5081 | - |
| 0.6315 | 1100 | 0.4749 | - |
| 0.6372 | 1110 | 0.4384 | - |
| 0.6429 | 1120 | 0.3604 | - |
| 0.6487 | 1130 | 0.3853 | - |
| 0.6544 | 1140 | 0.3238 | - |
| 0.6602 | 1150 | 0.3656 | - |
| 0.6659 | 1160 | 0.2918 | - |
| 0.6716 | 1170 | 0.3919 | - |
| 0.6774 | 1180 | 0.3366 | - |
| 0.6831 | 1190 | 0.3731 | - |
| 0.6889 | 1200 | 0.4923 | 0.0583 |
| 0.6946 | 1210 | 0.3101 | - |
| 0.7003 | 1220 | 0.3177 | - |
| 0.7061 | 1230 | 0.3779 | - |
| 0.7118 | 1240 | 0.3342 | - |
| 0.7176 | 1250 | 0.2819 | - |
| 0.7233 | 1260 | 0.3247 | - |
| 0.7290 | 1270 | 0.4053 | - |
| 0.7348 | 1280 | 0.3277 | - |
| 0.7405 | 1290 | 0.3325 | - |
| 0.7463 | 1300 | 0.3827 | - |
| 0.7520 | 1310 | 0.2674 | - |
| 0.7577 | 1320 | 0.309 | - |
| 0.7635 | 1330 | 0.3193 | - |
| 0.7692 | 1340 | 0.3399 | - |
| 0.7750 | 1350 | 0.4044 | - |
| 0.7807 | 1360 | 0.3436 | - |
| 0.7865 | 1370 | 0.851 | - |
| 0.7922 | 1380 | 0.9553 | - |
| 0.7979 | 1390 | 0.8694 | - |
| 0.8037 | 1400 | 0.8736 | 0.0333 |
| 0.8094 | 1410 | 0.7984 | - |
| 0.8152 | 1420 | 0.8228 | - |
| 0.8209 | 1430 | 0.8026 | - |
| 0.8266 | 1440 | 0.8568 | - |
| 0.8324 | 1450 | 0.8529 | - |
| 0.8381 | 1460 | 0.757 | - |
| 0.8439 | 1470 | 0.779 | - |
| 0.8496 | 1480 | 0.8002 | - |
| 0.8553 | 1490 | 0.8532 | - |
| 0.8611 | 1500 | 0.7195 | - |
| 0.8668 | 1510 | 0.7598 | - |
| 0.8726 | 1520 | 0.8295 | - |
| 0.8783 | 1530 | 0.7588 | - |
| 0.8840 | 1540 | 0.7698 | - |
| 0.8898 | 1550 | 0.792 | - |
| 0.8955 | 1560 | 0.8175 | - |
| 0.9013 | 1570 | 0.7195 | - |
| 0.9070 | 1580 | 0.7383 | - |
| 0.9127 | 1590 | 0.4577 | - |
| 0.9185 | 1600 | 0.0621 | 0.0207 |
| 0.9242 | 1610 | 0.0644 | - |
| 0.9300 | 1620 | 0.0578 | - |
| 0.9357 | 1630 | 0.0368 | - |
| 0.9414 | 1640 | 0.056 | - |
| 0.9472 | 1650 | 0.059 | - |
| 0.9529 | 1660 | 0.0442 | - |
| 0.9587 | 1670 | 0.0527 | - |
| 0.9644 | 1680 | 0.0651 | - |
| 0.9701 | 1690 | 0.0515 | - |
| 0.9759 | 1700 | 0.0512 | - |
| 0.9816 | 1710 | 0.0543 | - |
| 0.9874 | 1720 | 0.0676 | - |
| 0.9931 | 1730 | 0.0593 | - |
| 0.9989 | 1740 | 0.0558 | - |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.43.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |