metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_11_0
metrics:
- wer
model-index:
- name: openai/whisper-small
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_11_0
type: common_voice_11_0
config: zh-TW
split: test
args: zh-TW
metrics:
- name: Wer
type: wer
value: 32.594792142530835
openai/whisper-small
This model is a fine-tuned version of openai/whisper-small on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3250
- Wer: 32.5948
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3465 | 1.05 | 200 | 0.3499 | 41.9324 |
0.2137 | 2.1 | 400 | 0.2953 | 36.2951 |
0.1255 | 4.01 | 600 | 0.2927 | 33.7232 |
0.0509 | 5.06 | 800 | 0.3149 | 34.0566 |
0.0164 | 6.11 | 1000 | 0.3250 | 32.5948 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2